Volume Rendering on Stereo Display
with Virtual Object Manipulation

Julius Adorf, Daniel Berglund, Oleg Kravchuk *

DD2257 Visualization
KTH Royal Institute of Technology, Stockholm

May 27, 2013

Abstract

This article presents a GPU-based interactive volume
rendering application that projects 3D scans such as
obtained from a computer tomography onto a display.
A user wearing anaglyph glasses can perceive the vir-
tual object on a standard screen in depth. Stereo
is also supported for a 4K screen. A configurable
transfer function allows the user to highlight differ-
ent parts of the virtual object. The user can con-
trol the object pose with a single hand in front of a
OpenNI-compliant depth camera.

1 Introduction

First, purely two-dimensional visualization methods
are weak at the visualization of data that is inherently
three-dimensional. For example, a human looking at
single slices of a computer tomography scan might
have difficulties to perceive depth. It is probably
much more natural for the user to see the sliced data
rendered as a volume.

Second, in some applications the user needs to be
able to rotate and move a virtual object in three-
dimensional space. Often, a mouse is used as an input
method. However, it might be beneficial if the user

*Names in alphabetic order.

Figure 1: The application window shows the virtual
object on the left. The user may customize the trans-
fer function on the right panel.

can control the pose of the virtual object in real three-
dimensional space using hand gestures.

2 Related work

The idea of manipulating the pose of a virtual ob-
ject with a single hand is inspired by a touchscreen
interface developed by Fujitsu [1]. The volume ren-
dering implementation works on similar principles as
described in a tutorial on Real-Time Volume Graph-
ics at Eurographics 2006 [2].



51 RaSK: RaycastStereoinect

Figure 2: The transfer function can be used to high-
light the bone structure of the head of a human. The
colors can be customized by the user.

3 Volume rendering

Volume rendering is a crucial step in this application.
We obtain a rendered volume from the data slices by
means of interpolation and GPU-based ray-casting
targeted for real-time applications. In the implemen-
tation, we use OpenGL [3] for rendering and Qt [4] for
the graphical user interface. The rendering happens
within the unit cube. The start points on the front
face of the cube and the exit points on the backface
are computed first. These determine the direction of
the rays.

A transfer function that can be graphically edited
with a brush enables the user to highlight certain
parts. Figure 1 and Figure 2 show the same object
with different transfer functions.

4 Stereo display

The user can perceive the depth of the virtual ob-
ject, which is rendered to two separate images for
display in stereo. The two images are obtained from
the virtual object by parallel axis asymmetric frus-
tum perspective projection (see Figure 3).

The classic anaglyph 3D technique is used for stan-
dard screens. The images for each eye are color-

screen

Figure 3: The cameras for each eye are chosen to
have parallel axes. Perspective projection is used to
obtain the screen projections.

coded. In order to perceive depth, the user has to
wear anaglyph glasses.

The Visualization Lab at Royal Institute of Technol-
ogy in Stockholm has a high-resolution (4K) screen
illuminated by two digital projectors. These two pro-
jectors can be used to create a 3D effect. The user
needs to wear polarizing glasses. Each projector is
controlled by a node running a client application. A
server application on another node renders the im-
ages and sends them to the clients for display. Our
client-server solution uses Zeromgq [5].

5 Virtual object manipulation

The user can control the position and the orientation
of the virtual object either via the mouse or via ges-
tures with a single hand in front of a depth camera.

Waving a hand initiates interaction with the virtual
object. The initial position of the hand serves as
a reference position. Moving one’s hand closer to
the camera corresponds to zooming, whereas moving
one’s hand in vertically or sideways controls rotation
around two axes.

Any OpenNI-compliant depth camera is supported



Figure 4: The user controls position and orientation
of the virtual object by moving one hand in front of
a depth camera.

since our system acquires depth data through the
OpenNI [6] platform. We tested the system success-
fully with both an ASUS Xtion Pro camera (see Fig-
ure 4 and a Microsoft Kinect camera. The NiTE 2 [7]
body tracker provides estimates of the hand position.
In order to make the object pose less susceptible to
noise and shaking hands, we compute the weighted
moving average of a sequence of hand positions. This
venhances user experience.

6 Conclusion

Great efforts have been taken to create a system that
renders data slices as a volumetric object and displays
this virtual object on either a standard screen or on
a specialized high-resolution screen with two projec-
tors via client-server communication. The visualiza-
tion can be interactively modified by either changing
the transfer function or by changing the pose of the
object. Zoom and rotation can be controlled by both
mouse and single-hand gestures in front of a RGB-D
camera.

Even though the whole system is working, we can
think of various improvements. The stereo display
on the high-resolution screen can be made faster.
The initialization gesture for hand tracking should

be more convenient. Judging from the feedback we
got, it might be worth experimenting with different
mappings from hand gestures to rotation and zoom-
ing activities.

The project was technically challenging because

many subsystems needed to be implemented or in-
tegrated in order to make all these features possible.

Techniques and knowledge from various fields were
required: computer graphics, computer vision, signal
processing, parallel computing, to mention some of
them. In summary, the project would not have been
possible with so little time at hand without combin-
ing the skills of engineering students with different
backgrounds.

References

[1] Stan Schroeder. http://mashable.com/2013/
04/16/fujitsu-paper-touchscreen. Accessed
on 2013-05-23.

[2] Markus Hadwiger. http://www.cg.informatik.
uni-siegen.de/data/Tutorials/EG2006/
RTVGO4_GPU_Raycasting.pdf. Accessed on
2013-05-27.

[3] OpenGL. http://wuw.opengl.org. Accessed on
2013-05-23.

[4] Qt. http://qt-project.org. Accessed on 2013-
05-23.

[6] ZeroMQ. http://www.zeromq.org. Accessed on
2013-05-23.

[6] OpenNI. http://www.openni.org. Accessed on
2013-05-23.

[7] NiTE. http://www.openni.org/files/nite.
Accessed on 2013-05-23.



