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Abstract

Recognition of textured objects is fundamental in many robotic applications in household
environments. This work addresses the perception task of finding a rigid textured object
and its 3D pose in a cluttered scene such that the cluttered scene can subsequently be
resolved by successive removal of objects by a robot.

A system is presented that learns local 2D features and 3D models from objects. It is able
to detect an object and estimate its pose in a cluttered scene by matching observed local
2D features against the learned models. Confidence values provide a measure of goodness
for estimated object poses. For the object with the highest confidence value, the pose is
refined in order to reduce error, and that estimate provides a basis for the grasping pipeline
of a robot. The system is based on the existing, yet immature and unstable textured
object recognition stack in the Robot Operating System. Recent developments in object
recognition are reviewed in this context, especially the Oriented BRIEF feature detector
and descriptor.

Experiments have shown that in 82% of cluttered scenes in a validation set, an object is
correctly recognized in the scene within a margin for rotational error of 20 degrees and for
translational error of 3 cm. A live test on the robot revealed limitations as well as promising
aspects of the approach.
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Zusammenfassung

Die Erkennung von Objekten spielt in vielen Anwendungen der Robotik in Haushalten
eine wichtige Rolle. Diese Arbeit beschreibt die Aufgabe, die Lage und Orientierung eines
starren, texturierten Körpers in einer Szene mit vielen weiteren Objekten zu bestimmen.
Auf diese Art und Weise sollen die Objekte nacheinander von einem Roboter entfernt werden
können.

Ein System wird vorgestellt, welches lokale 2D-Merkmale und 3D-Modelle von einem
Objekt erstellt. Indem das System beobachtete lokale 2D-Merkmale mit den Modellen
assoziiert, kann es ein Objekt erkennen, und dessen Lage und Orientierung im Raum
bestimmen. Konfidenzwerte geben Aufschluss über die Zuverlässigkeit für die Schätzun-
gen der Lage und der Orientierung der Objekte. Die erste Schätzung mit dem höchsten
Konfidenzwert wird verfeinert. Die verfeinerte Schätzung reduziert den Fehler und er-
möglicht dem Roboter, das Objekt zu greifen. Das System beruht auf der bestehenden,
noch nicht ausgereiften Textured-Object-Recognition-Bibliothek aus dem Robot Operating
System. Jüngste Entwicklungen aus der Objekterkennung werden vorgestellt, insbesondere
darunter der Oriented-BRIEF-Algorithmus zur Bestimmung und Beschreibung von lokalen
2D-Merkmalen.

Experimente zeigen, dass die Lage und die Orientierung eines Objekts in 82% der zur
Validierung ausgewählten Szenen erfolgreich bestimmt werden, mit einer Fehlertoleranz von
3 cm Versatz und 20 Grad Winkelunterschied. Ein Testlauf auf dem Roboter zeigt sowohl
Grenzen als auch vielversprechende Aspekte des Ansatzes auf.
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1. Introduction

1.1. Intended Purpose

Object recognition is one of the fundamental tasks in computer vision. One of its applica-
tions is in robotics. Especially in household environments, it is often necessary for a robot
to detect the presence of an object, as well as to find the pose of the object such that the
robot can grasp it and make further decisions on a semantic level.

A particular application addressed by this work involves a robot in a household environ-
ment. The robot is given the task to go shopping, to empty the shopping bag onto a table,
and to move the items to the appropriate storage facilities. When the items are laid out on
the table, they form a cluttered scene. Most of these objects are rigid bodies that can be
distinguished by their characteristic texture, which is composed of pictorial descriptions of
the product, labels, and company logos. High levels of occlusion and the presence of several
such textured objects in a single scene renders recognition of these shopping items difficult.
Since the objects may be arbitrarily oriented, prior assumptions about their principal axes
are likely invalid.

The system presented in this work enables a Personal Robot 2 (PR21) to detect an object
and estimate its pose in a cluttered scene to provide sufficient information to a grasping
pipeline, such that the clutter can be resolved by removing items one-by-one from the scene.
Although, in the shopping scenario, the robot may have prior knowledge about what objects
are present in the scene, this information is not used in this work, in order to develop a
system that is general enough to be applied to other application scenarios.

1.2. Problem Statement

The challenge is therefore to correctly identify a rigid textured object, to determine its pose
in a scene with clutter and high occlusion, and to subsequently provide enough information
to allow the robot to grasp the object and to remove it from the cluttered scene.

1.3. Related Work

In literature many different approaches to object recognition are described. The techniques
using local features have been especially relevant to this work.

Tuytelaars and Mikolajczyk qualitatively review local feature detectors and descriptors
[1], and provide guidance for making an appropriate choice between a multitude of available
detectors and descriptors. Lowe’s work on the scale-invariant feature transform explains the
principles of the scale-space pyramid and rotation invariance of features [2]. Rosten and
Drummond introduce the FAST feature detector [3]. Calonder et al. describe BRIEF, a

1http://www.willowgarage.com/pages/pr2/overview
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1. Introduction

Figure 1.1.: From left to right: (a) Four rigid textured objects occluding each other in a
cluttered scene; (b) a 3D-visualization of the same scene, obtained with a Kinect
RGB-D camera; (c) the PR2 robot at Technische Universität München with a
Kinect camera mounted on its top.

feature descriptor whose generated descriptor vectors are efficient to match [4]. Oriented
BRIEF, derived by Rublee et al. from FAST and BRIEF, is the feature detector and
descriptor chosen for this work [5]. A common sub-task in object recognition is matching
observed features with model features. Gionis et al. introduce, and Slaney and Casey
summarize Locality Sensitive Hashing [6, 7], which finds approximate nearest neighbours.
Fischler and Bolles excellently explain RANSAC and deal with the perspective-n-point
problem [8]. Dogar and Srinivasa recently researched the problem of robustly grasping
objects in a cluttered scene [9]. Forsyth and Ponce’s work on computer vision served as
a reference and is what influenced the terminology in this work [10]. The same applies to
Gonzalez and Woods in the field of image processing [11]. Alpaydin’s excellent introduction
to machine learning [12] has influenced our experiment design and parameter optimization.
Fawcett published a detailed guide on how to evaluate the performance of classifiers through
analysis of Receiver Operating Characteristics [13]. Melsa and Cohn cover decision and
estimation theory [14].

1.4. Selected Approach

General Approach

Objects generally differ in shape and appearance. Recognizing the shopping items in a scene
as shown in Figure 1.1 (a) is difficult. In general, shopping items are often shaped similarly.
Worse, different products are sold in packagings of the same shape. The distinguishing
feature of these objects is texture.

Thus, it seems natural to rely on texture to recognize objects. We originally considered
to combine the information from textured surfaces with the information contained in the
shapes of the rigid bodies, however, we solely used texture information, and based our
system on the existing Textured Object Detection (TOD) stack in the Robot Operating
System.

2



1.4. Selected Approach

We required our system to run on a PR2 robot at Technische Universität München, as
depicted in Figure 1.1 (c). The PR2 is a robotic platform produced by Willow Garage.
A Kinect RGB-depth camera is mounted on top of the robot. It simultaneously provides
colour images and depth measurements. The Kinect camera measures the time-of-flight of
near-infrared rays to compute the distance between camera and 3D points. The typical
depth range of a Kinect camera is between 0.8 and 3.5 meters [15]. A depth image obtained
by this camera is visualized in Figure 1.1 (b).

In the presented approach, we first learn a model from each rigid textured object. An
object is rotated in front of the camera, which takes images and 3D scans from different
views of the object. For each view, local 2D features are extracted from the greyscale image.
Figure 1.2 shows both an image of a textured object (a) and the keypoints extracted from
a greyscale version of the image (b). The local 2D features, together with the associated
3D points on the object’s surface, form the model features. The model features make up
the model of this object. The 3D part of the model, a sparse point cloud, is described in a
standard coordinate system.

Figure 1.2.: From left to right: (a) Textured object haltbare milch; (b) the keypoints of local
2D features detected on textured surface of haltbare milch

Given an image of a scene, we can use the models to recognize instances of the template
objects. For clarity, we call a scene a query scene if we want to recognize objects in it.
First, local 2D features are extracted from a greyscale query image depicting the query
scene. These features are called query features in order to distinguish them from model
features. Nearest-neighbour search permits to find correspondences between a query feature
and one or more model features. Some of these correspondences for a query scene are
shown in Figure 1.3. Based on these correspondences, a model-fitting algorithm that is
robust with respect to outliers, aligns models to the 3D scene such that their projections
onto the image plane explain the observed data. Finally, if an aligned model sufficiently
explains the correspondences, the system guesses the object to appear in the query scene
at the pose of the aligned model. A confidence value measures the degree to which a guess
explains the observed data. Although we do not explicitly make use of a statistical model,
the general idea is based on the likelihood principle.

3



1. Introduction

Figure 1.3.: The (hypothetical) correspondences between the query image (left), and a se-
lected view of the template object (right)

Implementation

The basic steps in learning models and recognizing objects are already implemented in
the Textured Object Detection (TOD) stack. TOD supports the use of different local 2D
feature detectors and descriptors. It supports a range of nearest-neighbour search algorithms
that find correspondences between feature sets. Finally, TOD uses RANSAC as the afore-
mentioned model-fitting algorithm for estimating the objects’ poses. The confidence value
is measured by the number of correspondences consistent with this pose.

We encounter cluttered scenes (Figure 1.1 a) that exhibit high occlusion rates, as well
as show objects in arbitrary orientations. For our application, it is sufficient to resolve the
clutter object by object. Hence, we chose to concentrate on finding the pose of only one
object in the scene. In the following, when we are talking about recognizing an object, we
mean both detecting its presence and estimating its pose.

We present a new system called CLUTSEG, built on top of TOD. It has three purposes:
Primarily, it adapts TOD to our purpose of resolving a cluttered scene by locating one object
in the scene. Second, it helps choosing between the multitude of available feature detectors
and descriptors, and selecting one of the nearest-neighbour search algorithms. Third, it
helps to find good parameter values since TOD and CLUTSEG have many parameters.
CLUTSEG locates an object by ranking the initial guesses from TOD by confidence value.

Then, the best-ranked guesses are refined until a guess with sufficiently high confidence
value is found.

We chose Oriented BRIEF (ORB) as a feature detector and descriptor. It yields binary
descriptor vectors, which can be compared efficiently. We traded exactness for speed and
chose Locality Sensitive Hashing for finding approximate nearest neighbours between these
binary vectors. ORB is a recent development, and we were curious about how it performs
in an application.

4



2. Theory

This chapter provides the theoretical foundations for building the 3D object recognition
system as presented in Chapter 3. We review the required mathematical tools together with
the basics of 3D object recognition where models are learnt from multiple views. We discuss
Oriented BRIEF, a new feature detector and descriptor. We resort to approximative nearest
neighbour search, which permits to quickly establish correspondences between the query
image and the models. Then, we show how pose estimation is related to other problems,
and how to solve it in the presence of noise and mismatches in the correspondences. Finally,
this chapter shows how the implemented system relates to the framework of classifiers and
estimators, which is helpful for the evaluation given in Chapter 4.

2.1. Prerequisites in Geometry

A model of an object is described in its own coordinate system. Another coordinate system
is defined by the depth camera. In this section, we explain how a coordinate system attached
to the camera and a coordinate system attached to the object are related by proper rigid
transformations. We precisely define the pose of an object with respect to the camera in
terms of a proper rigid transformation. We also describe how pose estimation is related to
camera calibration and the perspective-n-point problem.

2.1.1. Rigid Transformations

A rigid transformation of coordinates is defined as an orthogonal transformation followed
by a translation in Euclidean space. An orthogonal transformation is either a reflection or a
rotation. A proper rigid transformation additionally requires the orthogonal transformation
to be a rotation (the definitions of rigid transformations found in literature are inconsistent,
though: Reflections are excluded from rigid transformations in [10], but included in [16], we
stick to the latter). In three dimensions, a proper rigid transformation of coordinates can
be represented by a rotation matrix R ∈ R3×3 and a translation vector t ∈ R3.

T : R3 → R3,p 7→ Rp + t (2.1)

The inverse transformation is given by

T−1 : R3 → R3,p 7→ R−1(p− t) = RT (p− t) (2.2)

A proper rigid transformation (PRT) can be used to describe a rigid motion of an object
with respect to a reference coordinate system. In physics, this is called an active transfor-
mation, and explains the relationship between two different points in the same coordinate
system.

5



2. Theory

Figure 2.1.: The camera coordinate system and the object coordinate system

Another interpretation is to see a PRT as a passive transformation. The PRT transforms
vector coordinates between two different coordinate systems. The passive interpretation is
used throughout this work.

2.1.2. Object-Camera Transformations

3D points can be specified in coordinates with respect to any coordinate system. The
question arises which coordinate systems are convenient and how many are necessary. In
our case, the two different coordinate systems discussed in the following prove sufficient.

The camera coordinate system (c) is attached to the camera. Two of its basis vectors define
the image plane and the remaining basis vector is directed towards the scene. The camera
coordinate system is convenient for the robot. For example, if the robot is programmed to
grasp an object at two points, it needs to know the camera coordinates of the two grasping
points. The object coordinate system (o), on the other hand, is attached to the object.
The model features are located in the object coordinate system, which is also called model
coordinate system in literature [17]. Both coordinate systems are shown in Figure 2.1.
The PRT between object coordinates and camera coordinates is called the object-camera
transformation and is denoted by c

oT . Subsequently, its inverse PRT is called camera-object
transformation and denoted by o

cT :

o
cT =c

o T
−1 (2.3)

We stick to the subscript and superscript notation introduced in [10]. Here is an example
that indicates the usefulness of these definitions. To compute the distance d between the
camera and the object origin 0 = (0, 0, 0)T , we may use

d = || coT (0) ||
2

(2.4)

The object-camera transformation defines the relationship between camera and object.
Since we are only interested in the relative location and orientation of the object with respect
to the camera, we simplify matters by assuming the camera to be fixed and by always looking

6



2.1. Prerequisites in Geometry

at scenes from the eyes of the robot. Note that if there are multiple objects in a scene, then
there exists one object-camera transformation for each object. For example, if there are
two objects 1 and 2 in the scene, the distance d12 between them may be computed by

d12 = || coT1 (0)− c
oT2 (0) ||

2
(2.5)

where c
oT1 and c

oT2 are the respective object-camera transformations, which uniquely deter-
mine the object poses with respect to the camera.

We can reformulate our problem of recognizing objects as

“Find the object-camera transformation for each of the objects in the scene.”

In the special case of a single object

“Find the object-camera transformation for one of the objects in the scene.”

2.1.3. Camera Model

In our selected approach, we construct models by associating local 2D features extracted
from the image plane with corresponding 3D points in the scene, as shown in Figure 1.2. In
the recognition process, models are aligned to the scene and projected onto the image plane
to verify whether they explain the observed data. In both cases, it is required to know the
nature of the relationship between the scene and its 2D image, which is explained by the
camera model.

Since both TOD and CLUTSEG use OpenCV, an open source library for computer vision,
we adopt their camera model. It is a pinhole camera model, where a perspective projection
is used to determine the projection of a 3D point onto the image plane [18]. This plane is
conveniently defined in front of the centre of perspective [10, 18].

In the previous section, it was shown that estimating the pose of an object with respect
to the camera is equivalent to estimating the object-camera transformation. There is a
third way to look at this problem, and this is the estimation of the extrinsic parameters
of the camera. The extrinsic parameters relate the camera pose to some given coordinate
system in its environment. Thus, equivalently to the problem definitions given previously
in Section 2.1.2, we can see our object recognition problem as

“Find the extrinsic camera parameters with respect to the coordinate system of
one of the objects in the scene.”

Estimation of camera parameters belongs to the topic of camera calibration. In our
case, the intrinsic parameters of the Kinect camera are factory-specified. TOD uses camera
calibration techniques from OpenCV in order to find the extrinsic parameters of the camera;
given that the correspondences between n 3D points and their n projections onto the image
are known, the extrinsic parameters can be estimated. It is an instance of the perspective-
n-point (PnP) problem [8].
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2.2. Object Recognition

In the previous chapter, we discussed how to formulate our problem of object recognition.
Here we introduce the basic mechanisms for learning models from multiple views, based
on the characteristic features in the object’s appearance. We show how feature detectors
and descriptors find these features, especially using Oriented BRIEF. We cover how nearest-
neighbour search finds correspondences between query features and model features. Finally,
based on a set of correspondences, we introduce a general RANSAC-based approach of
estimating the pose of objects in the scene.

2.2.1. Local Features

In object recognition, the question arises on how to generate a description of an object, and
how to describe a query scene. We can distinguish local approaches from global approaches.
An example for a global approach is template matching. Yet, in scenes with occlusion, local
methods are clearly preferable [17]. Object recognition using local features is based on
the detection of keypoints in an image. A multitude of different methods is available, but
they all aim at choosing keypoints that are repeatable for the same object over different
images. A 2D local feature consists of a keypoint and a feature descriptor that captures
information about its local image neighbourhood. Feature descriptors are often vectors
and their distance in terms of a vector norm provides a means for measuring the similarity
between two features.

Learning Models from a Single View

Lowe describes an approach to object recognition based on local features where each model
is learnt from a single view of the template object [2]. Given a query image, local features
are extracted and matched against the model (Figure 2.2). This approach works well, if the
object in the query scene has approximately the same orientation as in the template view.
Lowe reports that using SIFT features, discussed in Section 2.2.4, it is possible to recognize
objects up to a rotation of 20 degrees [2]. Unfortunately, considering only a single view is
insufficient if query scenes show objects in arbitrary orientations.

Learning Models from Multiple Views

The single-view scheme can be extended to allow for recognizing objects in arbitrary ori-
entations. In order to accomplish this, a description of a template object is based on local
features extracted from multiple views of the object. Local features from a query scene are
matched against the model that incorporates features recorded from different viewpoints
(Figure 2.3).

Generally, there is no need to incorporate all collected features into the model. A strategy
on how to select features from multiple views is presented in [17]. Learning models from
multiple views is the basis of this work.
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Figure 2.2.: Object recognition with models learned from a single view. The example shows
three correspondences between query features (×) and model features (•).

2.2.2. Feature Detectors

A feature detector designates keypoints in an image. There exists a multitude of feature
detectors in literature, and more efforts have been spent into inventing new ones than
comparing existing ones [19].

There is generally no such thing as the best feature detector. As often in engineering, all
we can do is making the best choice for the task at hand. An ideal feature detector though,
should be efficient, and it should find features that are repeatable, informative, local, and
accurate [1].

Repeatability describes the chances that the same point on an object shown from two
different viewpoints and viewing conditions is designated keypoint on both images [19].
Thus, repeatability is important when trying to find correspondences between two images.
A feature detector designates keypoints after examining the local image neighbourhood.
These neighbourhoods can for example be deformed by noise, image discretisation, a change
of viewpoint or a change in lighting conditions [1]. These deformations have to be addressed
by a feature detector to achieve repeatability. In order to achieve invariance as regards scale
and rotation, features can be extracted at multiple scales, and orientations can be assigned
to keypoints (Table 2.1).

An informative feature identifies an image neighbourhood that shows high variation in
intensity. If not, the features would be difficult to distinguish. For example, we would not
like to have features detected on non-textured background, or on areas that carry little
information.

A local feature only carries information about a small neighbourhood of a point. This
ensures that it is still repeatable despite of occlusion. A small neighbourhood also leads to
less informative features, enforcing a trade-off between locality and informativeness [1].

2.2.3. Feature Descriptors

A feature descriptor describes the image neighbourhood of a point. It is often a vector.
Ideally, two corresponding keypoints should have similar descriptor vectors, such that cor-
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Figure 2.3.: Object recognition with models learned from multiple views. The example
shows correspondences between query features (×) and model features (•).
Correspondence c1 is matched to the right model, but the location is incor-
rect. Correspondences c2 and c3 are correct. Finally, correspondence c4 is
mismatched.

respondences can be found by nearest neighbour search. A feature descriptor that permits
for efficient matching is BRIEF [4].

2.2.4. Selected Detectors and Descriptors

Some of the existing detectors and descriptors are relevant for this work. We briefly intro-
duce the Scale-Invariant Feature Transform (SIFT) [2, 20]. We use SIFT features and the
Speeded-Up Robust Features (SURF) [21] in order to compare them in terms of speed with
the Oriented BRIEF (ORB) [5], the latter being used in our implementation. All SIFT,
SURF, and ORB are both feature detectors and descriptors.

Detector Multi-scale Oriented Keypoints

SIFT yes yes
SURF yes yes
FAST no no
ORB yes yes

Table 2.1.: Properties of selected feature detectors. SIFT, SURF, and ORB are also feature
descriptors
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SIFT

The scale-invariant feature transform became popular in object recognition. It is desirable
that images of objects at different scales produce more or less the same features. SIFT
achieves this by selecting keypoints from a scale-space pyramid in order to generate scale-
invariant features. SIFT is both a feature detector and a descriptor. Lowe further describes
a system that lets correspondences vote in Hough space, whose dimensions are location,
orientation and scale [2]. When bins contain more than a predefined number of votes, the
object is said to be recognized at this pose. SIFT is applied to panorama stitching [22].

FAST

FAST is a feature detector that designates keypoints by looking at a Bresenham circle of 16
pixels in diameter around a candidate keypoint. If nine contiguous pixels of the diameter
pixels are all brighter (a), or all darker (b) than the centre pixel plus (a), or minus (b) a
certain threshold, then the circle centre is designated keypoint [3]. FAST is efficient because
it can rule out certain candidate keypoints by reasoning on the diameter pixels values north,
east, south and west of the centre. FAST-ER builds on this idea, but reasons about the
diameter pixels in an order optimized by ID3; the information gain is computed on a set
of training images [19]. OPENCV 2.2 just contains an implementation of FAST, presumably
because of its smaller code size.

BRIEF

BRIEF generates binary feature descriptors for a given set of keypoints. The BRIEF de-
scriptor vectors are sensitive to rotation [4]. They are formed by a bit string computed from
the image neighbourhood of a given keypoint. Each bit stores the result of comparing pixel
intensities between two 2D points in the neighbourhood, which are called test locations.
The test locations are initially sampled from a 2D Gaussian distribution once, and together
form a test pattern [4]. Finding nearest neighbours of binary descriptors according to their
Hamming distance is faster than for real-valued features using the L2 norm.

Oriented BRIEF

Oriented BRIEF (ORB) is a combination of the FAST feature detector and the BRIEF fea-
ture descriptor, plus modifications that render the extracted features orientation-invariant
[5]. It was designed to outperform SIFT and SURF at least in terms of computation time.
We here refer to the implementation available in OpenCV 2.3 1.

ORB computes image moments for assigning orientations to keypoints detected by FAST.
Image moments of order (p+ q) are defined (see [11]) for a 2D digital image f of dimension
MxN as

mpq =
M−1∑
x=0

N−1∑
y=0

xpyqf(x, y) (2.6)

1http://code.ros.org/svn/opencv/branches/2.3/opencv/modules/features2d
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ORB computes the moments m01 and m10 for a circular neighbourhood of a keypoint
and derives an orientation α for the keypoint:

α = arctan2 (m01,m10) (2.7)

Consider the vector (m01,m10)
T ∈ R2. The angle of this vector becomes the orientation

of the keypoint. If the keypoint neighbourhood were a probability distribution, then this
vector would contain the means of the marginal distributions of x and y, respectively.

A problem arises, when rotating the BRIEF test pattern according to the FAST keypoint
orientation. There is a correlation between the image moments and the BRIEF vectors
obtained from a rotated test pattern. Such a correlation reduces the entropy of computed
BRIEF descriptors. The solution is to compute a test pattern that has only little correlation.
ORB uses test locations as depicted in Figure 2.4.

Figure 2.4.: The 256 test locations of ORB

2.2.5. Feature Matching

In object recognition that is based on local features, correspondences between known views
of the object and the query image can be established by matching the query features with
model features. The computation time depends on the size of the descriptor vector, the
nearest neighbour algorithm and the used distance metric. If exactness is not required, i.e.
approximate nearest neighbours are sufficient, then speed-ups can be achieved. Comput-
ing the Hamming distance between binary features is faster than computing the L2-norm
for real-valued feature descriptors [4]. This holds especially true when using the POPCNT

instruction, which is available at least in AMD and Intel architectures [23, 24].

Locality Sensitive Hashing

SIFT, ORB and other feature detectors and descriptors are used to describe an image in
terms of local features. Nearest neighbour matching can then find correspondences between
two feature sets. Locality Sensitive Hashing (LSH) quickly finds nearest neighbours, and
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trades exactness in favour of a reduction in computation time. Not always does it return
the absolute nearest neighbour. LSH is a randomized algorithm that performs multiple
scalar projections of a high-dimensional vector, and reasons that the scalar projections are
similar for similar input vectors. It can be extended to find nearest neighbours for binary
features. LSH has applications in object recognition, image retrieval, music retrieval, and
identification of duplicates [7].

2.2.6. Pose Estimation

The previous sections showed how the problem of recognizing objects is related to the
estimation of extrinsic parameters, and in particular, to the perspective-n-point (PnP)
problem. The PnP problem can be solved by RANSAC.

RANSAC stands for RANdom SAmple Consensus. It is a randomized algorithm that
fits a parametrized model to the data. It is robust with respect to outliers. The pose
estimation problem in this context can be reduced to the location determination problem
or the equivalent PnP problem [8]. Generally, this algorithm randomly chooses a small
subset of the data that fully determines the model parameters. Then it forms a consensus
set of inliers, that is, all data points that are consistent with the model up to a certain
margin of error. RANSAC constructs a fixed number of such consensus sets and then
chooses the model with the largest consensus to compute the final estimate.

Pose estimation using RANSAC can be categorized as a method of pose consistency or
alignment, where first a pose is hypothesized, and then the hypothesized pose is verified for
support by the remaining data [10].

2.3. Machine Learning

This section shows how object recognition relates to machine learning, especially to classi-
fication and estimation theory. It also covers the basics of a machine learning experiment,
which are required for optimizing parameters and for understanding the strengths and weak-
nesses of an object recognition system. When evaluating the system, a measure of goodness
needs to be defined.

2.3.1. Classification

It is difficult to perceive our object recognition problem as a pure classification problem.
Assume, there were no interest in the pose of an object. Assume further that objects are
unique in an image. Then object recognition can be seen as a multi-label classification
problem, as described in [25]. An image is described by a set of labels, and conversely,
the classification result is a set of labels that predict which objects are in the image. The
Receiver Operating Characteristics (ROC) can be used to evaluate standard two-class clas-
sifiers [13, 14]. Standard measures of goodness are the true and false positive rates that can
be computed from confusion matrices. In case of multi-label classification, it is possible to
define similar metrics [25]. Unfortunately, even if object pose were not an issue, assuming
objects to appear uniquely on an image might be unrealistic. For example, a shopping bag,
as in the application scenario of this work, is best represented by a multiset, and not by a
multi-label set. Thus, also a scene with shopping items is best represented by a multiset.
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Given a finite set of labels, the number of multi-label sets is finite, the number of multisets
is not. A problem with an infinite number of decisions is an estimation problem rather
than a classification problem [14]. For example, trying to define a specificity metric on it is
difficult, since the number of negatives in a multi-set is generally infinite.

2.3.2. Estimation

Estimation can be regarded as the continuous generalization of classification [14]. Clearly,
if it is known which objects are in a scene, object recognition can be perceived as a pure
estimation problem. For each object on the scene, the six degrees of freedom of an object’s
pose have to be estimated. The squared and absolute errors of an estimate are possible
measures of goodness that are generally available for estimators.

2.3.3. Recognition

Our recognition problem neither fits a pure classification nor a pure estimation problem.
In this work, a measure of “goodness” sees the object recognition system as a combination
of classifier and estimator. The estimation of “goodness” is conditioned to the classifier
making the right choice, and scenes that contain multiple instances of the same object are
not considered.

2.3.4. Parameter Optimization

In the presented system, the algorithms for detecting, describing and matching features are
parametrized, as well those for pose estimation and those for making the final decision. This
leads to the question of how to find a parameter set such that the system performs well in
the application scenario.

Validation Set

Choosing good parameters for parametrized algorithms is a general problem in computer
science. Solutions for these problems include adaptive methods that estimate the parameters
directly from the data. For example, in adaptive numerical quadrature, grid points are
selected according to an error estimate gained directly from function samples. Optimization
techniques find a parameter set that optimizes performance on a validation set, where
ground truth is avaible. This optimization technique is well-known in machine learning.

Test Set

It is interesting to estimate the error which a classifier or estimator is expected to make
when working on new instances. This is the generalization error which cannot be estimated
on the validation set. Instead a separate test set is required to estimate the generalization
error [12].

14



3. Implementation

This chapter describes our CLUTSEG system for recognizing an object in a cluttered scene.
It takes a query image as input. As a result it shall detect the presence of an object, find
its pose in the query scene, and mark points on the object.
CLUTSEG is based on the existing Textured Object Detection (TOD) Library, which we

discuss in detail.

3.1. Software Dependencies

CLUTSEG depends on many other open-source libraries. Of these, we briefly explain (Fig-
ure 3.1): OPENCV for operating on images, PCL for dealing with 3D data, ROS for interfacing
with the robot, SQLITE for storing and retrieving experimental data, and R for analysing
data.

Figure 3.1.: CLUTSEG depends (amongst others) on TOD, ROS, PCL, OPENCV, VSLAM, R, and
SQLITE.

OpenCV is an open-source library for computer vision [18]. It supports the representation,
the input and the output of images as well as many image processing operations. It offers
methods for camera calibration and feature detection, which are used by CLUTSEG and TOD.

The Robot Operating System (ROS) is an open-source framework for the development of
robot applications, having its roots in the STAIR project at Stanford University [26]. In
ROS, distributed nodes communicate by publishing and subscribing to topics. In our case,
the interesting topics were the image and the 3D point cloud, together forming the sought-
after depth images. These images and other data can be recorded in so-called bags. ROS

contains the VSLAM package, which is only used by TOD because it contains a RANSAC
implementation for solving the PnP problem.

The Point Cloud Library (PCL) is concerned with processing 3D data [27]. A point cloud
is a set of points in n-dimensional space. For example, the output of the Kinect camera can
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be represented by a point cloud where each point is described by its Cartesian coordinates
with respect to the camera and by its observed colour.

SQLite is a reliable file-based relational database that is well-suited for local applications.
It is thoroughly tested with over a million tests, and hassle-free to use. It provides convenient
command-line tools that allow for exporting data quickly into human-readable formats.

R is an open-source environment for statistical computing and graphics. It excels in good
documentation. R supports many different sources of data, and in particular also a SQLITE

database.

3.2. Textured Object Detection Library

In this section we analyse the software underlying the CLUTSEG system. We explain how we
modified it and improved it to better fulfil our requirements. We describe how to extract
models of template objects from multiple views, and cover the elementary pipeline that
later recognizes instances in query scenes.

The Robot Operating System contains the packages tod, tod training and tod detecting.
The system formed by these three ROS packages is called TOD for easier reference 1. Through-
out this work, TOD has been used in Subversion revision 50479, and modifications are ex-
plicitly mentioned in the following. At this revision, TOD was experimental, unstable, and
not covered by automatic tests. The system participated in the Solutions in Perception
Challenge contest at ICRA 2011 in Shanghai for comparison.
TOD offers two modes. One targets the Kinect RGB-D camera. The second mode is

optimized for working better with a Prosilica MP 5 camera [28]. While the latter clusters
correspondences prior to pose estimation, the former does not. TOD recognizes objects solely
by intensity and depth information; colour information is ignored. CLUTSEG uses TOD in the
Kinect mode.

3.2.1. Learning

In general, an object recognition system needs models of the objects which it shall be able
to recognize. In TOD, a model is a set of model features learnt from multiple views of the
template object. Each of the views is processed in a pipeline (Figure 3.2). Afterwards, the
resulting model features from selected views are unified, and together form the model of
the object.

Model Features

Given a single view, let p be the 3D object coordinates of a point on the template object.
Let p′ be the projection of p on the image plane, and d the descriptor vector that describes
the local image neighbourhood of point p′. We call (p,d) a model feature.
TOD conceptually generates a model feature in three steps. First, a feature detector selects

a keypoint on the image plane. Second, a feature descriptor vector is computed, which
describes the neighbourhood of the keypoint. Third, the descriptor vector is associated
with the object coordinates of the 3D point that corresponds to the keypoint. The keypoint
itself is of no further interest.

1German readers will note the unfortunate choice in abbreviating “textured object detection”.
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Figure 3.2.: The pipeline of TOD used for learning models. The rectangular nodes represent
processes, the slanted nodes represent data.

Model Extraction

TOD offers a toolchain that extracts model features from a template object on a rotating
table. The template object is either manually or automatically rotated, and a depth camera
takes images from multiple views. The latter consist of a depth image and a greyscale
image each. The views are the basic units processed in a pipeline that comprises three
stages for each view: First, the computation of the object-camera transformation from the
image. Second, the segmentation of the region of interest that shows the object on the
image. Third, the extraction of local 2D features from the greyscale image, followed by the
construction of model features from the region of interest.

Camera Calibration

Given a view, the first step is to obtain the object-camera transformation by estimating
the extrinsic parameters of the camera. This is required for every view because the object
pose changes relative to the camera, and conversely, the camera pose changes relative to the
object. The camera calibration is based on chessboard-like fiducial markers that are glued
onto the rotating table on two opposite sides (Figure 3.3). OPENCV offers camera calibration
methods that help to find the chessboard corners and then, based on these corners, estimate
the extrinsic parameters by solving the perspective-n-point problem.

There is a subtlety in the relationship between the fiducial markers and the object coordi-
nate system. The camera calibration computes the PRT c

fT between the fiducial coordinate
system (f) attached to the fiducial markers and the camera coordinate system. The origin
in fiducial coordinates is defined halfway between the two chessboards. Yet, we need the
object-camera transformation c

oT . The solution here consists in just defining the object co-
ordinate system to be the same as the coordinate system attached to the fiducial markers,
that is

c
oT : R3 → R3,p 7→ c

fT (p) (3.1)

As long as one of the two chessboards is detected, the transformation can be estimated,
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Figure 3.3.: The fiducial coordinate system and the object coordinate system are defined to
be the same.

which proves useful when the template object occludes the chessboard further away from
the camera. The chessboards were sometimes not detected in the image at all. In such cases,
we used dithered binary images as a fallback. This improved reliability. We singled out 23
cases of the original images where camera calibration failed. Some tested image processing
operations work better than others on these 23 images (Table 3.1). Three preprocessed
images are shown in Figure 3.4.

Pre-processing method Imagemagick command Success

Dithering to Binary convert -monochrome $1 $2 23/23
Colour Reduction convert -colors 2 $1 $2 23/23
Local Adaptive Thresh. convert $1 -lat 25x25 -threshold 50% $2 23/23
Thresholding convert $1 -threshold 50% $2 19/23
Sharpening convert -sharpen 0x12 $1 $2 2/23
Closing convert -morphology Close Disk $1 $2 1/23
Opening convert -morphology Open Disk $1 $2 0/23
Median Filtering convert -median 2 $1 $2 0/23

Table 3.1.: Various image processing operations have been applied to the set of 23 images
where detecting the chessboards initially failed. When converting these images
to dithered binary images, the chessboard was detected on all 23 of them.

Segmentation of the Region of Interest

The model must only includes features that belong to the template object. Hence, the
extraction of model features must be confined to the region in the image that shows the
object but no background.

TOD segments the 3D point cloud of the template object using a box-shaped pass-through
filter of a predefined size at the object origin c

oT (0). Afterwards, a radius outlier search
removes all points with less than 20 neighbours within 2 cm. TOD projects the segmented
point cloud onto the image plane. The set of projected points form a mask that is supposed
to be aligned as close as possible to the true region of interest.
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Figure 3.4.: From left to right: (1) Original image where pose estimation failed; after (2)
Dithering to Binary; after (3) Colour Reduction; after (4) Local Adaptive
Thresholding. On images 2, 3, and 4, the extrinsic parameters were successfully
estimated.

Extraction of Model Features

The final step in learning requires the construction of a set of model features from the
depth image. Local 2D features are extracted using any one of the feature detectors and
descriptors provided in OPENCV. Each of these features is described by a keypoint p′ on the
image plane and a descriptor vector d. A camera model, whose intrinsic parameters are
known, uniquely associates the keypoint p′ with a 3D point, described in camera coordinates
pv in the scene. Applying the camera-object transformation, the object coordinates p are
obtained by p = o

cT (pv). This yields a model feature (p,d). TOD stores all learned models
in a modelbase.

In the actual implementation, TOD applies the inverse object-camera transformation just
before calling RANSAC for pose estimation, but it is equivalent, conceptually simpler, and
computationally faster to do this only once while extracting features.

3.2.2. Recognition

This section shows how TOD can be used to recognize instances of template objects in
query scenes, making use of the models learned in the previous section (Figure 3.5). The
recognition process in TOD can be split into three parts: First, the extraction of query
features. Second, the matching of query features and model features to obtain a set of
correspondences between query image and models. Third, the estimation of object poses
based on this set of correspondences.

Query Features

Let p be a 2D point on a query image, and d its descriptor vector. Then we call (p,d)
a query feature. Hence, such a query feature is nothing but a keypoint-descriptor pair
produced by SIFT, SURF or ORB, or any other feature extractor, and we introduce this
term to clearly tell features from the query and the model apart. Note that query features
do not include 3D information.
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Figure 3.5.: TOD recognition pipeline (Kinect mode).

Extraction of Query Features

The extraction of query features is similar to the extraction of model features. Both query
feature and model feature extraction can be configured, so TOD allows to try different fea-
ture detectors with configurable parameters. TOD also provides rBRIEF, an experimental
modified version of BRIEF, which we used in some experiments but we then replaced in
favour of ORB from OPENCV.

Feature Matching

Since the image is not segmented, these query features emanate from different textured ob-
jects, or from some textured background. Matching these features shall find correspondences
between these query features and model features. Let Ci be the set of correspondences where
a query feature has been matched with a model feature from the i-th template object. Fi-
nally, let C = (C1, . . . , Cn) denote the partition of all correspondences for the query scene,
where n is the number of template objects described in the modelbase. TOD integrates dif-
ferent nearest-neighbour algorithms. TOD offers a brute-force matching algorithm which we
use in Section 4.3.1 for comparison. We use Locally Sensitive Hashing in TOD for matching.

TOD finds up to k nearest neighbours for each query feature. The maximum number k of
correspondences per query feature can be controlled by parameter knn. TOD implements the
ratio test, as described in [20]. If a model feature is matched with multiple query features,
only the correspondence with the minimum distance is retained. This way, TOD ensures that
the mapping from query features to model features is injective.

Guess

The hypotheses TOD generates for a given query scene are called guesses. A guess is a triple
(i, T̂ , S), where i denotes the template object which TOD believes to see on the scene, T̂
the estimated pose of the object in terms of an object-camera transformation and S ⊆ Ci
the consensus set of inliers.
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Pose Estimation

Given the correspondences C, TOD generates a set of guesses. The correspondences are
treated separately for each template object, that is TOD looks at each correspondence set
Ci. For the i-th template object, RANSAC is called iteratively. If RANSAC returns with
a pose estimate T̂ij in the j-th iteration and the size of the consensus set Sij is greater
or equal to a parameter min_inliers_count, then TOD infers that there is an instance of
the template object at the estimated pose and generates a guess (i, T̂ij , Sij). Note that the
inlier sets Sij are disjoint because the RANSAC call in the j-th iteration is told to operate

only on the set Ci −
⋃j−1
k=1 Sik, and C forms a partition. If not, then iteration is stopped,

and TOD continues with the correspondence set for the next template object, if any. This
means that the inlier sets of two different guesses never share a correspondence.

The ROS package posest in stack vslam contains an implementation of RANSAC for the
PNP problem, which is used by TOD. It is roughly similar to the RANSAC/LD algorithm
presented in [8]. It solves the P4P problem. The largest consensus set found is fed to the
PNP-solver in OPENCV (cv::solvePnP), which then computes the final pose estimate.

Figure 3.6 shows a model aligned to the scene. Altogether, for a given query scene, TOD
takes the query image and generates an unordered set of guesses, which is the output of the
TOD recognition process.

3.3. Clutter Segmentation Tool

This section discusses our implementation of the CLUTSEG object recognition system on top
of TOD. We introduce three core concepts that enable CLUTSEG to recognize the next object
that is to be resolved from the clutter: First, a guess ranking helps to discard guesses with
low confidence. Second, guess refinement aims at spending more computational resources on
specifically improving pose estimates for guesses with high confidence value, and returning
only the one with the highest confidence value. Third, guess rejection reduces the probability
of settling on the wrong guess. Finally, this section covers the tools that help to find good
parameters for the clutseg system, and help to collect statistics to evaluate its performance.

3.3.1. Guess Ranking

A core idea of CLUTSEG is that we can have more confidence in a guess, when it is supported
by a large consensus set of inliers. It remains an assumption throughout this chapter
that more inliers are positively correlated with the probability of the guess being correct.
Measures for correctness are defined in Section 3.4.2.

A guess ranking is a function r that assigns a real-valued score to a guess (i, T̂ , S).
Different rankings can be defined and plugged into CLUTSEG, such as a ranking based on
proximity to the camera, or a combination of multiple guess rankings. Yet, the ranking
of interest is a guess ranking rS that assigns scores to guesses according to the number of
inliers

rS : (i, T̂ , S) 7→ |S| (3.2)

The number of inliers is not only interesting because of the assumed correlation with
probability of being correct. It also simplifies the robotic task of grasping an object by
supplying more 3D points.

21



3. Implementation

Figure 3.6.: A model aligned to the query scene. The query features (×) correspond to
model features (•). The correspondence belonging to the lower right query
feature is consistent with the pose estimate because the aligned model point
projected onto the image plane (4) is within a certain distance of the query
feature; this correspondence is said to be an inlier, or equivalently, it is said to
belong to the consensus set for the aligned model. The other correspondence is
designated outlier.
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3.3.2. Guess Refinement

Given a guess, the idea behind guess refinement is to spend additional computation resources
on selected guesses to reduce the expected error in pose estimates. Guess refinement in
CLUTSEG takes one of the guesses (i, T̂ , S). CLUTSEG matches the query features only against
the model features of the i-th template object, as if the modelbase contained only one model.
The pose estimation using RANSAC leads to a new set of guesses, for instances of the i-th
template object only. The best guess according to the chosen guess ranking is designated
the refined guess.

Guess refinement aims at finding more matches between query features and the single
object whose pose is to be refined. By ignoring other models only correspondences between
the query scene and one model are found. Such an approach is optimistic, and possibly
dangerous, especially in cases where the guess to refine is a false positive. The validity of
such an approach has at least to be empirically verified.

3.3.3. Guess Rejection

A technique denoted as guess rejection reduces the chance of returning an incorrect guess.
CLUTSEG rejects guesses whose guess ranking is smaller than a configurable parameter value
accept_threshold. How guess rejection exactly works and in which scenarios it is useful
is explained in the following section.

3.3.4. Recognition

This subsection describes the full recognition process. It puts the ideas of guess ranking,
guess refinement and guess rejection into context.

Given a query scene, the CLUTSEG recognition process first calls TOD once to produce a set
of initial guesses D for all objects in the modelbase. A ranking defines a total order on D.
The inlier ranking rS is used for this by default. CLUTSEG chooses the first ranked guess in D
and computes the refined guess. If the ranking of the refined guess is greater or equal than
accept_threshold, it is accepted and returned as the result of the recognition process. In
case the refined guess is rejected or no refined guess was made at all, the algorithm proceeds
to the next guess in D, and repeats the refinement step. This iteration is performed until
either a refined guess is accepted, or CLUTSEG declares the scene to be empty because none
of the initial guesses in D lead to a refined guess.

This scheme was built with the intention to avoid the problem of finding a good operating
point for TOD in ROC space. It is sufficient that TOD returns a set D where the high-ranked
guesses are true positives. For one of the high-ranked guesses, there are two cases to consider.
If the high-ranked guess is a true positive, then the refinement step should either confirm
this guess, or improve it, respectively. If the high-ranked guess is a false positive against
expectations, then the refinement step might still lead to a guess. We expect this refined
guess to have low ranking, and therefore to be rejected; in such a case, other high-ranked
guesses are examined.

This two-staged recognition process requires the query features to be extracted once.
Matching must be done at least twice. In the refinement step, there are fewer features to
match than in the initial step, the detection step.
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3.4. Parameter Optimization

.

This section reviews the parameters of the CLUTSEG system, discusses their nature and
explains the approach that has been used to find a reasonable parameter set. It introduces
statistics that measure the performance of the CLUTSEG system on sets of query scenes where
ground truth is available.

3.4.1. Parameter Space

The CLUTSEG system has a fair amount of parameters. Many of these parameters have
already been introduced in the previous chapters, others still need to be described. Ta-
ble 3.2 shows an overview of all configurable system parameters, except the parameters for
feature extraction, which depend on the choice of feature extractor, and which are treated
separately.

Parameter Range

detect_matcher_type categoric
detect_knn integer
detect_do_ratio_test boolean
detect_ratio_threshold real
detect_ransac_iterations_count integer
detect_max_projection_error real
detect_min_inliers_count integer
refine_matcher_type categoric
refine_knn integer
refine_ransac_iterations_count integer
refine_max_projection_error real
refine_min_inliers_count integer
accept_threshold real

Table 3.2.: CLUTSEG parameters for matching and pose estimation

Even if we only consider five different values for each of the ten of these parameters, we
obtain 510 ≈ 106 different parameter sets. Assume we would like to test two different match-
ers and three different feature detectors. This would result in around 6 ·106 parameter sets.
A full factorial design for finding optimal parameters, as recommended in [12], becomes
difficult. The pragmatic approach chosen in this work is based on three ideas: First, we
make an a-priori choice in algorithms. Second, tools were developed together with CLUT-

SEG that support visual inspection of experiment results in order to support an intuitive
analysis. Third, the exploration of parameter space is done selectively, and parameter sets
in promising regions are more thoroughly investigated. The danger of such an approach
is the chance to only find a local optimum instead of the targeted global optimum, and
the drawback is that results have to be formulated with even more care since they are not
supported by a full grid of samples in parameter space.
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Feature Extraction Parameters

Feature extraction parameters control the extraction of local 2D features. A choice needs
to be made for the feature detector and the feature descriptor. Feature detectors again
need to be configured. The requirements described in Chapter 1 call for a feature detector
that produces features in good quantities, and it shall be reasonably fast. Hence, we chose
ORB, which takes three main parameters. The number of levels in the scale-space pyramid
is denoted by octaves, the magnification factor between two levels is called scale_factor.
Parameter n_features is a hint for ORB on how many features are desired.

Feature Matching Parameters

The matching process in the detection step and the refinement step have some parameters
in common. It is possible to plug different matching algorithms into TOD. The choice is
denoted by detect_matcher_type (refine_matcher_type), but partly dictated by the
prior choice of feature descriptor. A binary feature descriptor calls for a matcher that is
well-designed to work with binary vectors. Also, brute-force is hardly a choice except for use
as comparison to approximate nearest neighbour search algorithms. We chose the Locally
Sensitive Hashing algorithm implemented in TOD. Parameter detect_knn (refine_knn) is
a hint to the matching algorithm about how many neighbours per query feature shall be
retrieved. The ratio test ([20]) can be enabled or disabled by detect_do_ratio_test and
configured by detect_ratio_threshold for the detection step. In the refinement step it
does not make sense and is disabled by default.

Pose Estimation Parameters

The pose estimation step in detection and refinement depends on three parameters each.
RANSAC is controlled by detect_ransac_iterations_count (refine_ransac_iterations_count)
and detect_max_projection_error (refine_max_projection_error). No further pose
estimates for an object are generated once RANSAC returns an estimate with a consensus
set of size less than detect_min_inliers_count (refine_min_inliers_count).

3.4.2. Measured Statistics

This subsection describes statistics that are recorded by CLUTSEG for a set of scenes where
ground truth is available. We explain how errors and scores are computed for a given
query scene or whole sets of query scenes. We cover the statistics that are recorded in the
learning and the recognition process, which are aimed at simplifying the reasoning about
the system’s performance and about the influence of parameters.

Learning Statistics

When constructing the models from multiple views, some simple statistics are recorded. The
model construction is part of TOD’s codebase. It had to be modified in order to keep track
of the minimum, maximum, and average number of features extracted on the views. Also,
the number of times, where the computation of the object-camera transformation failed
due to undetected chessboards, is tracked. The time required for building the modelbase is
recorded as well. Results are presented in Chapter 4.
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Ground Truth

The error CLUTSEG makes on a query scene can only be computed when ground truth is
available. The ground truth data for a scene consist of a set of labels that tell which objects
can be seen at which location and which orientation in the scene. Thus, the ground truth
G can be described as a set of labels

G = {(i, coTi) : object i is on scene at pose c
oT} (3.3)

Classification Error

CLUTSEG only attempts to partially estimate ground truth. It does not try to label all
objects in the scene, but only one. Mapping to ROC terminology is not straight-forward.
Ignoring the estimated pose, it is possible to put a guess made by CLUTSEG into one of four
categories: (a) True positive, if the guessed object is actually on the scene; (b) false positive
if, the guessed object is not on the scene; (c) true negative, if there is no guess and the scene
is empty; (d) false negative, if the scene shows objects but CLUTSEG did not make a guess.

Unfortunately, this scheme does not cover the case in which two objects have been con-
fused. In the application scenario, several objects are expected to be on the scene.

Pose Estimation Error

The error in the estimated pose can only be computed in case the guessed object is actually
visible in the scene. In case it is visible, the translational error et given ground truth pose
c
oT and pose estimate c

oT̂ is given by the distance between the estimated location and the
true location of the object origin 0 = (0, 0, 0)T :

et =
∣∣∣∣∣∣ coT̂ (0)− c

oT (0)
∣∣∣∣∣∣

2

(3.4)

The orientation error eα is computed from the ground truth orientation r and estimated
orientation r̂, specified in axis-angle representation, and using the dot-product, we have

eα =

∥∥∥∥arccos

(
rt r̂

||r||
2
||r̂||

2

)∥∥∥∥ (3.5)

Rodrigues’ rotation formula can be used for efficiently converting back and forth between
rotation matrix and axis-angle representation, and is readily available in OPENCV.

Guess Scores

Here, we present a score that measures CLUTSEG’s performance on a single query scene. The
goal is to find a score function that closely models the utility of a guess made for a query
scene.

If the guessed object is not on the scene, clearly the utility of such a guess is zero. Also,
we consider the utility to be zero, if the orientation and translation error is beyond a certain
margin of error. The idea is therefore to introduce a combined classification and estimation
score.

Let αmax = π
9 and tmax = 3cm be the maximum tolerable errors in orientation and trans-

lation, respectively. The choices are consistent with the Solutions in Perceptions Challenge
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2011. Then, for a query scene with ground truth G and a guess g, we define the guess score
function u as

u : G, g 7→


1 if scene is empty and no guess made

0 if guessed object is not on scene

1−min{1, e2t
t2max

+
e2α
α2
max

} if guessed object is on scene

(3.6)

The presented guess score function is piecewise continuous. Thus, it retains more in-
formation than a simple statistic that records the binary observation whether the guess is
within or beyond an error margin. The influence of error in pose is bounded, and outliers do
not influence average the score function too much. On the other hand, it does not provide
useful gradient information in regions of bad parameter sets, given the function’s flat surface
beyond a certain region defined by tmax and αmax.

Success Rate

We define an object to be successfully recognized if and only if its estimated pose does not
exceed the error margins for translation (tmax) and rotation (αmax). CLUTSEG produces
only one guess per scene. The success rate is the ratio between the number of scenes where
CLUTSEG successfully recognized an object and the number of scenes in total.

Recognition Statistics

CLUTSEG also collects statistics about the recognition process that do not involve ground
truth. These statistics cover the number of guesses, matches, inliers in the detection and in
the refinement stage. The runtime is recorded as well.

3.4.3. Experiment Strategy

Experience showed that it takes around 2-7 minutes to evaluate CLUTSEG’s performance
on a validation set with 21 images. Hence it was vital to make a decision which regions
of parameter space to explore first and which regions to explore next. In this work, the
strategy was to select a few regions, and then to pursue search in the neighbourhood of
those parameter sets that performed well in the experiments conducted so far. To a certain
extent, the strategy resembles genetic programming.

3.4.4. Experiment Runner

In this subsection we describe CLUTSEG’s experiment runner that permits to test different
parameter sets against a set of scenes. We describe how a database was employed for
keeping track of parameter sets and experiment results, the visualization tools that make the
results accessible for analysis, and the major implementation decisions that saved computing
resources.
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Experiment Database

CLUTSEG uses a SQLITE database for keeping track of parameter sets and the recorded
statistics, as introduced in Sections 3.4.1 and 3.4.2, respectively. The experiment runner can
be executed in the background. When being idle, it polls the database for new parameter
sets. New parameter sets are tested for validity with computationally cheap tests. The
failing ones are marked and skipped, thus one failing experiment does not kill the process. A
no-frills object-relational mapper provides a convenient interface to work with the database.
The primary purpose of the database consists in selecting experiment inputs and outputs in
a central, accessible and convenient location. Few efforts have been spent on normalization,
performance tuning or any other aspects that were not related to its primary purpose. For
convenience, data can be selected from various database views.

Modelbase Cache

Extracting models is computationally expensive and may take several minutes. As long as
the feature parameters do not change in several experiments, there is no need to regenerate
the models, and the modelbase is retrieved by the SHA1 hashcode of the feature parameters.
A modelbase for four template objects takes up around five Megabytes on the filesystem,
depending on the choice of feature detector and descriptor. TOD stores the modelbase as
compressed YAML (Yet Another Markup Language) text files. If disk space were scarce
and reading the modelbase quickly into memory were an issue, then binary files would be a
better choice.

Visualization Tools

CLUTSEG employs OPENCV and R for visualizing the recognition results in the query scene and
the statistical data acquired in experiments. It provides functions for visualizing guesses and
ground truth in parallel, showing inliers, translational and rotational errors in the manner of
a heads-up display. It provides command-line tools to inspect views of the modelbase, that
is the region of interest, the extracted keypoints, and the estimated pose. Imagemagick is
used to generate montage images that show the results of one experiment at once. Finally,
TOD allows to visualize matches between the query scene and the modelbase. R is used for
pulling data from the database and for plotting the data.
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This chapter presents the experimental results of the CLUTSEG system on the validation
set, and results from a live test on the PR2 robot at Technische Universität München. It
covers how the modelbase was built, how validation data, ground truth, and the test data
have been obtained. We discuss the parameter set found by experimentation. Scenes are
presented in which the system performs well. We also cover the limitations and issues that
were revealed during the evaluation.

4.1. Data Acquisition

This section shows how all the data required for constructing the modelbases and the
validation set was obtained. The modelbases and the validation set required raw data,
which have been collected in a similar fashion and the same hardware and software setup.

4.1.1. Common Setup

We used the Willow Garage PR2 robot at TUM to collect raw data. On top of the PR2,
a Kinect RGB-D camera was mounted. A wooden board with two chessboards attached
was setup in about one meter distance from the camera. This board served as a rotating
table. The chessboards were printed on white DIN-A4 paper using a laser printer, and
around them was enough white margin, as recommended in the documentation of method
findChessboardCorners in OPENCV. The recording took place in an indoor laboratory en-
vironment whose lighting conditions were roughly similar to the ones to be expected in an
application scenario. The board was manually rotated, carefully and not too fast. The ob-
jects must not move with respect to the fiducial markers, which are attached to the object
coordinate system.

The resolution of the image was 1280x1024 pixels, and the dense point cloud had a
resolution of 640x480. The sampling rate was set to about one depth image per second.
The camera matrix needs to be recorded, as it is required at least in solving the point-to-
point correspondence problem in pose estimation.

4.1.2. Modelbases

TOD requires multiple views from the template object. For the modelbases, we saved about
60–70 views per object to a bag file, which has been observed to work better than a bag
with only 40 views. For each object, around 1 Gigabyte of data was recorded. The next
preparatory steps consisted in uncompressing the bag files with a script included in both
CLUTSEG and TOD, in estimating the object-camera transformation for each view, and in
masking for each view as described in Section 3.2.1. These post-processed raw data pro-
vide the masks and the object-camera transformation which can be used to create several
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modelbases using different feature detectors and descriptors. The resulting models of each
template object were much smaller in size than the original raw data. The models took up
around 1 Megabyte of disk space each, three magnitudes less than the original raw data.
The feature detectors are responsible for this data reduction. In the experiments, ORB
selected 394 keypoints on average per image of the modelbase raw data.

Figure 4.1.: The four objects assam tea, haltbare milch, jacobs coffee, and icedtea, which
were used in evaluation.

We collected raw data for four different rigid textured objects (Figure 4.1). These are
items commonly found in German supermarkets. These are assam tea, haltbare milch,
icedtea, and jacobs coffee. The objects have different properties. For example, assam tea is
smaller than icedtea. The front of icedtea exhibits characteristic texture. Its back, though,
only shows smallprint. jacobs coffee shows texture that repeats on different sides of the ob-
ject. Finally, haltbare milch contains characteristic texture which is confined only to certain
regions on its surface.

A practical consequence of Equation 3.1 is that a template object must not move with
respect to the fiducial markers when collecting raw data. This would be equivalent to
redefining the object coordinate system.

4.1.3. Validation Set

The validation set, which was used for optimizing parameter values, was collected similarly
to the data for the modelbases. Again, the fiducial markers were required for computing
ground truth for the objects on the validation scenes. We recorded around 50–60 views of
various scenes, each containing three objects from the modelbase. Out of those, we chose
21 scenes to form the validation set. We chose them in roughly equal angle increments
such that the variance in viewpoint between two scenes is maximized. The scenes show the
objects with varying levels of occlusion. Each object appears in upright orientation.

Given a scene, ground truth requires the computation of the object-camera transforma-
tions c

oTi,
c
oTj , and c

oTk for the three objects i, j and k in the scene. Figure 4.2 shows three
coordinate systems, defined with respect to the fiducial markers. The object coordinate
system was defined for an object when the model was being learnt. Therefore, an object
must be placed in the validation scene such that its object coordinate system aligns with
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Figure 4.2.: From left to right: (a) A validation scene showing jacobs coffee, haltbare milch,
icedtea, and the ground truth; (b) three coordinate systems that must align
with the object coordinate systems of the three instances.

one of the three coordinate systems as depicted in Figure 4.2. We placed object j in the
centre between the fiducial markers, such that

c
oTj : p 7→ c

fT (p) (4.1)

In other words, object j was placed on the rotating table in the same way as when raw
data for a modelbase was being collected. Pencil markers on the template objects helped
us to remember the correct arrangement. Imprecision was difficult to avoid when we placed
the objects manually on the table. This introduces some noise in the ground truth data.

The other two objects i and k were placed upright next to object i, with offset of −0.15
and 0.13 (in metres) in x-direction of fiducial coordinates

c
oTi : p 7→ c

fT

p−

0.15
0
0

 (4.2)

c
oTk : p 7→ c

fT

p +

0.13
0
0

 (4.3)

4.2. Experiments

Here we describe the regions in parameter space that have been covered by our experiments.
We discuss the observations made during experimentation and present the parameter set
that has been found to work well on the validation set.

4.2.1. Searched Parameter Space

In total, 4326 experiments with different parameter sets have been conducted. In 2251
experiments, we used FAST as a feature detector and rBRIEF as a feature descriptor. In
2075 experiments, we chose ORB instead.
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Figure 4.3.: From left to right: (a) the smoothed scatter plot of success rates of 4326 exper-
iments in total. We assigned identifiers to the experiments in increasing order
with time. The patterns reflect our tactics in choosing which part of parame-
ter space to explore next. (b) The observed distribution of success rates in all
experiments. Bad parameter values result in a zero success rate. Only a few
parameter sets led to success rates greater than 90%.

Altogether, the experiments took more than 341 hours of wall-clock time to compute, an
average of 4.7 minutes per experiment. Table C.1 lists the hardware and software configu-
ration.

4.2.2. Observations

Finding good parameters has been an interactive process. New parameter sets have been
evaluated in batches. A smoothed scatter plot shows the achieved success rates on the valida-
tion set over time (Figure 4.3 a). Experiments 3105–4129 have explored the neighbourhood
of a promising experiment 2336. This explains the plateau starting with experiment 3100.
The few experiments where CLUTSEG achieved a success rate of greater than 90% on the
validation set (Figure 4.3 b) are outliers. This is indicated by averaging runs with the same
parameter values as a prior experiment with a high success rate.

4.2.3. Selected Parameter Set

Here we present a parameter set, dubbed SPS, that has been found to work well on the
validation set. It contains values for all configurable system parameters. Table 4.1 provides
values for feature extraction. We used the same feature extraction parameters for the
modelbase and for the query scenes. We used the default values from OPENCV for parameters
octaves and scale_factor. We chose the value for accept threshold empirically such that
it exceeded the number of inliers in cases where a mislabelling was observed.

Table 4.2 shows parameter values for the detection and refinement stages. We used
Locality Sensitive Hashing in both stages to match the binary features produced by ORB.
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Parameter Value

detector_type ORB
descriptor_type ORB
extractor_type ORB
n_features 5000
octaves 3
scale_factor 1.2

Table 4.1.: The selected CLUTSEG parameters for feature extraction.

Parameter Value

detect_matcher_type LSH-BINARY
detect_knn 3
detect_do_ratio_test 0
detect_ratio_threshold 0.8
detect_ransac_iterations_count 1000
detect_max_projection_error 7
detect_min_inliers_count 8
refine_matcher_type LSH-BINARY
refine_knn 3
refine_ransac_iterations_count 1000
refine_max_projection_error 5
refine_min_inliers_count 17
accept_threshold 10

Table 4.2.: The selected CLUTSEG parameters for feature matching and pose estimation.

4.3. Performance

The performance of the CLUTSEG system has been tested on the validation set, and in a live
test on the PR2 robot. This section reviews CLUTSEG’s performance for a parameter set
that worked well on the validation set.

4.3.1. Performance on Validation Set

Since CLUTSEG uses randomized algorithms, we have run it with the SPS values for 20 times
on the validation set to measure the average performance. The system correctly recognized
an object within error bounds of 3 cm and 20 degrees in rotation in 82% of the validation
scenes. One of the scenes where CLUTSEG successfully recognized an object is visualized in
Figure 4.4, which shows the ground truth with labelled axes, the estimated pose, and the
keypoints of query features that found both a match with a model feature and support the
pose estimate.

The guesses that remained within the afore-mentioned error bounds showed an average
error of 1.2 cm in translation, and 4 degrees in rotation. When only considering the guesses
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which exceeded the error bounds, the average translational error was 6.9 cm, and the average
rotational error was 2 degrees. CLUTSEG achieved an average guess score of 0.62. A guess
was made in every scene. Objects were not confused in any of the scenes.

Figure 4.4.: From left to right: (a) A validation scene; (b) a visualization of the estimated
pose for icedtea.

On average, 2344 keypoints have been extracted from a validation scene. In the detection
stage, where TOD generates a set of initial guesses (Section 3.2.2), LSH found 1082 corre-
spondences on average. At least 1262 query features remained unmatched. On average, an
initial guess was supported by 46 correspondences.

In refinement, LSH found 377 correspondences on average, all of them matching a single
object. The average guess in refinement was supported by 71 correspondences. The average
pose estimate returned by CLUTSEG had a confidence value of 109.

The initial guess that was selected for refinement had a support of 144 correspondences.
The confidence values in the detection stage and the refinement stage cannot be com-
pared because which of the correspondences are designated inlier depends on the re-

fine_max_projection_error parameter.
Recognizing an object took 17 seconds on average using the setup described in Table C.1.

Using brute-force nearest neighbour search instead of Locality Sensitive Hashing, the system
took 54 seconds per image. Brute-force search yielded 1068 correspondences per image,
very similar to LSH. Since TOD ensures injectivity in the mapping of query features to
model features, and since LSH does not guarantee to find k nearest neighbours, the number
of correspondences found by either LSH or brute-force matching does not need to match.
So, LSH ran at least a factor 3 faster than brute-force search. When measuring only the
runtime for feature matching alone, we observed LSH to be more than a magnitude faster
than brute-force search. The success rate of LSH on the validation set was 81%.

For the selected parameter values, the success rate of 82% is over-optimistic with regard
to the test scenes, because the validation set was used for optimizing the system. For ground
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Model Number of model features

assam tea 4623
haltbare milch 6981
icedtea 15184
jacobs coffee 8912

Table 4.3.: The number of model features of assam tea, haltbare milch, icedtea, and
jacobs coffee.

truth was available for the validation set, more precise data can be presented on it than for
the live test.

4.3.2. Performance in Live Test

This section shows the results of a live test of CLUTSEG on the PR2. We tested whether
the system is able to recognize an object in cluttered scenes with high occlusion rates
and objects in arbitrary orientation (Figure 4.5); how duplicates in the scene affect the
recognition process (Figure 4.6); in which setups CLUTSEG confuses objects (Figure 4.7);
and whether the system is able to recognize an object in the presence of many textured
objects in the scene (Figure 4.8). Finally, we tested whether the PR2 is able to grasp a
recognized object (Figure 4.9).

The guess refinement only matches query features against the model features of one sin-
gle object (Section 3.3.2). The figures in this section show the number of correspondences
(inliers) consistent with the estimated pose, and the total number of correspondences be-
tween the query image and the single model. For example, consider the guess with label
haltbare milch (10, 201) from Figure 4.5 (a). Its consensus set contains 10 inliers. Between
the query image and the model of haltbare milch, 201 correspondences were found in total.

Recognition worked better when the objects were in upright position. CLUTSEG had
more difficulties with objects in arbitrary orientations. Figure 4.5 (a) shows a scene where
haltbare milch was recognized. Only 10 inliers were consistent with its estimated pose,
which is also off the ground truth. Figure 4.5 (b) presents a similar scene where icedtea was
accurately recognized.

In scenes containing icedtea and at least one other object from the modelbase, we observed
that CLUTSEG has a strong tendency to recognize icedtea. We tested each of the six possible
pairings of the four objects in the modelbase. The relation, where A > B denotes “A is
recognized if shown together with B in a scene” was observed to be icedtea > haltbare milch
= jacobs coffee > assam tea. The four objects are described by a different number of model
features (Table 4.3). From the initial guesses, CLUTSEG selects the one with the highest
guess ranking, which explains this observation.

CLUTSEG and TOD do not perform any clustering of correspondences prior to pose esti-
mation. With duplicates on the scene, the number of inliers consistent with the estimated
pose of an object decreases. This can be explained by TOD making the mapping from query
features to model features injective. Yet, even in the presence of many duplicate objects,
CLUTSEG still recognizes objects (Figure 4.6).
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Figure 4.5.: Two cluttered scenes with all four objects from the model base as seen by the
PR2. From left to right: (a) haltbare milch was recognized with 10 inliers out of
201 correspondences between the image and the model of haltbare milch. The
pose is fairly off the ground truth pose, yet the inliers belong to the right object.
(b) CLUTSEG precisely estimated the pose of icedtea with a confidence value of
155 inliers out of 516 correspondences in a scene with high occlusion rate.

Some shopping items do not only resemble each other in shape, but also in appear-
ance. The (wild-berries) icedtea and the peach-flavored ice tea were confused by CLUTSEG

(Figure 4.7 a). CLUTSEG guessed correctly after adding (wild-berries) icedtea to the scene
(Figure 4.7 b).

The recognition of objects is generally rendered more difficult when many textured object
are on the scene; it is more likely that the nearest neighbour of a query feature is not a true
correspondence between object and model. How difficult it becomes is an open question. We
tested scenes with many textured objects. Most of them did not belong to the modelbase
though. CLUTSEG encountered no difficulties in the scenes depicted by Figure 4.8 nor in
similar scenes tested.

The grasping algorithm is based on computing the centroid of the inlier cloud. The gripper
of the PR2 is unfortunately not large enough to grasp icedtea. The maximum aperture of
the gripper permits the PR2 to grasp assam tea, haltbare milch and jacobs coffee, but there
is almost no margin for error. This made the grasping in the live test hard. However, in
all test runs, we observed the PR2 to correctly steer its manipulator correctly towards the
object. A successful attempt where the PR2 grasps the recognized assam tea is shown in
Figure 4.9.
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Figure 4.6.: From left to right: (a) icedtea was recognized despite of the presence of many
duplicates. (b) CLUTSEG recognized one of the four items of assam tea.

Figure 4.7.: From left to right: (a) The (wild berries) icedtea in the modelbase was confused
with peach ice tea. (b) The additional presence of (wild berries) icedtea resolves
the confusion.
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Figure 4.8.: Many textured objects in the scene render recognition more difficult. From
left to right: (a) icedtea was recognized with 40 inliers in a scene with 11 tex-
tured objects. (b) After removing icedtea and its easy-to-confuse peach-flavored
variant, jacobs coffee was recognized with 21 inliers out of 284 correspondences.

Figure 4.9.: The PR2 grasps assam tea.
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Figure 4.10.: Comparison of SIFT, SURF and ORB in terms of speed and number of
features.

4.3.3. ORB

This subsection discusses results of experiments with ORB. It covers a benchmark that
compares computation speed of ORB, SIFT, and SURF. It shows how ORB responds to
the number of desired features, a parameter that cannot be found in many other feature
detectors.

Computational Speed

We first compared SIFT, SURF and ORB in terms of computational speed and the quantity
of features produced. We used the default parameters from OPENCV (SVN revision 5465),
except for ORB, where the number of desired features was set to 1500.

Figure 4.10 shows the CPU time per image, the CPU time per keypoint, and the number
of keypoints, averaged over 21 images from the validation set. None of the three detectors
run in parallel, and the measured CPU time was roughly equivalent to wall-clock time. The
hardware and software configuration of the notebook used for the benchmark is shown in
Table C.2.

ORB ran about 14 times faster than SIFT, and about 5 times faster than SURF. Because
ORB required only 52.86 milliseconds for computing keypoints and descriptors for one
image, the amount of time CLUTSEG spends in computing query features becomes negligible
compared to the time spent in matching and pose estimation.

Number of Features

In this work, it has been necessary to control the number of features selected by a feature
detector. In general, the number of features selected by a feature detector should be con-
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Figure 4.11.: From left to right: (a) assam tea, (b) clutter, (c) house, and (d) mandrill.

Figure 4.12.: The response of ORB on the number of desired features.

figurable, using a simple and intuitive threshold [1]. ORB has such a threshold, and our
evaluation indicates that this threshold is effective.

The parameter n_features specifies the number of desired features produced by ORB.
Other feature detectors and descriptors in OPENCV, such as SIFT and SURF do not provide
such a parameter. Neither does the FAST feature detector. The parameter n features is
simple and intuitive. Yet, ORB does not make any guarantee about the actual number of
features extracted on the image. The parameter is just a hint. The question arises how well
ORB responds to different numbers of desired features. ORB selects features based on the
Harris corner measure [5].

Figure 4.12 plots the number of desired features against the number of features that were
actually obtained by ORB. The four test images assam tea, clutter, house, and mandrill
(Figure 4.11) carry different amount of informations, though all were sampled at the same
resolution of 512x512 pixels. Increasing values for n_features have been tried until the
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number of actual keypoints reaches its maximum for all four images.
Mandrill has fine-grained texture, and ORB extracted maximally 13865 keypoints on this

image. This number is greater than for image house, where only 303 features were chosen for
all values of n_features greater or equal than 500. The actual number was never observed
to exceed the desired number of keypoints by more than 2 keypoints.

4.4. Issues

4.4.1. Repetitions in Texture

The system had difficulties to recognize icedtea when shown from a certain angle. It turned
out that icedtea has smallprint almost all over its backside (Figure 4.13). The same set
of letters repeatedly appear over a large area, which probably makes it hard to obtain
informative features. Furthermore, focus becomes an issue.

Figure 4.13.: Repetitive texture on template object icedtea.

4.4.2. Consensus for Distant Pose Estimates

Generally, the system relies on the size of the consensus set to be a strong indicator for the
goodness of an estimate. We observed that in one experiment and scene, CLUTSEG estimated
a distance of 88 metres between icedtea and the camera (Figure 4.15). This bad estimate
was almost two orders of magnitude off the ground truth. Yet it still had support by 14
inliers — enough in this scene to make it the best-ranked guess.

An explanation for the large consensus set is that the projection error is a measure on the
image plane. Given a scene, consider any correspondence ci = (qi, pi) ∈ R2 × R3 between
a query feature with keypoint qi and a model feature with 3D point pi. Let c

oT̂ be a pose
estimate. Let U : R3 → R2 denote perspective projection for the calibrated camera. Define
the projection q̂i of the model point pi, aligned to the scene by c

oT̂ , as

q̂i := U
(
c
oT̂ (pi)

)
(4.4)
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The correspondence ci is designated inlier if and only if the L2-distance between query
keypoint and the projection of the model point aligned to the scene is less than a threshold
r, precisely

ci is an inlier w.r.t. c
oT̂ ⇔ || qi − q̂i ||2 ≤ r ∧ pi is visible (4.5)

Now, let us model the scenario, where a distant pose estimate was generated for an object
that is close to the camera in truth. Let c

oT denote ground truth for c
oT̂ .

et

(
c
oT̂ ,

c
oT
)
≥ l (4.6)

Choose l large enough that the projection of the aligned model spans only one pixel q̂ on
the digital image plane (Figure 4.14). For the n correspondences of this object, this means

∀i ∈ [n] : q̂i ≈ q̂ (4.7)

Plugging Equation 4.7 into Equation 4.5, we obtain an inlier criteria for the bad estimate:

∀i ∈ [n] : ci is an inlier w.r.t. c
oT̂ ⇔ || qi − q̂ ||2 ≤ r ∧ pi is visible (4.8)

All correspondences within a circle of radius r around q̂ are designated inliers. If this
circle contains many keypoints on the query image, the resulting consensus set of the pose
estimate might grow larger than expected. The effect can be neglected if radius r is small
enough. In the experiment that exhibited the phenomenon, the radius was set to r = 12
(pixels). Note that this radius is equivalent to the parameter max_projection_error.

Figure 4.14.: An example, where all points of a far-away aligned model are projected to the
same point (4 = q̂) on the image plane. All four correspondences c1, c2, c3,
and c4 are designated inliers because all the associated query keypoints (×)
fall into the circle around point p̂.

There are at least three hypothetical solutions to this issue. One might set the parameter
max_projection_error to a lower value, which is what we have done. The bad pose
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estimates could be pruned away by the a-priori assumption that objects are within a certain
range. Finally, the radius r could be replaced by a function that depends on the estimated

distance
∣∣∣∣∣∣coT̂ (0)

∣∣∣∣∣∣
2

.

Figure 4.15.: On a test scene, the badly aligned pose still results in many inliers.

4.4.3. Incomplete Models

When recording data for a modelbase, the bottom of each template object is facing the
rotating table, and is thus invisible to the camera from all viewpoints. This does not
matter as long as instances of these template objects are standing upright. This does
matter however, when instances occur in arbitrary orientation.

4.4.4. Systematic Error in Models

Unfortunately, analysis of the 3D models used in the evaluation revealed that the models
have been corrupted by a systematic error. The 3D point clouds that make up the 3D
models do not meet our expectations. We compared our models with the TOD models of
campbells chicken noodle, downy, fat free milk, and good earth tea from the TOD tutorials 1.
Whilst downy’s model seems valid when projected onto a plane (Figure 4.16 a), icedtea’s
model does not (Figure 4.16 b-c).

Figure 4.17 shows the xy-coordinate histograms of the x, y-coordinates of the model points.
These histograms were computed by projecting the model points orthogonally onto the xy-
plane, counting the number of points that fall into the same bin of 320x320 bins (pixels) in
total. Outliers are not included in the histogram. Both object coordinate axes are drawn
onto the histograms. The histogram clearly shows the erroneous models, especially in the
case of icedtea’s; its xy-coordinate histogram has roughly the form of a hash (’#’).

In comparison, the TOD model histograms look as expected (Figure 4.18). Even the
texture-less lid on the top of fat free milk can be made out on the histogram (Figure 4.18 c).
Just like icedtea, fat free milk is a cuboid. Hence, their xy-coordinate histograms should be
similar, which is not the case.

1http://vault.willowgarage.com/wgdata1/vol1/tod kinect bags/training . Accessed 5 July 2011.
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Figure 4.16.: From left to right: (a) Correct model of downy; (b) side view of icedtea model;
(c) top view of icedtea model.

Figure 4.17.: From left to right: xy-coordinate histogram of (a) assam tea, (b) halt-
bare milch, (c) jacobs coffee, (d) icedtea.

Figure 4.18.: From left to right: xy-coordinate histogram of (a) campbells chicken noodle,
(b) downy, (c) fat free milk, (d) good earth tea.

Unfortunately, the source for the systematic error is yet unknown, although the odds
are that the issue is related to camera calibration and/or the accuracy of the depth image.
Despite the issues presented in this section, the performance on the validation set and the
live test is promising. It remains to see whether better models can further improve results.
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5.1. Key Results

While our evaluation reveals that many issues remain to be solved, we have shown that an
object recognition system can be built on three basic concepts: First, extracting local 2D
features using off-the-shelve feature detectors and descriptors. Second, nearest-neighbour
search to find correspondences between the scene under investigation and the models. Third,
a model-fitting algorithm that aligns models to the scene such that they are consistent with
these correspondences.

Our experiments showed that the Oriented BRIEF feature detector and descriptor are
14 times faster than SIFT, and 5 times faster than SURF. ORB is interesting for real-time
applications. Oriented BRIEF is one of the first feature detectors and descriptors that
permit us to conveniently specify the number of features to be extracted.

Locally-Sensitive Hashing proved to work well with binary features; it was a magnitude
faster than brute-force matching in the validation scenes, and both the success rate and the
average guess score were hardly impacted by trading exactness for speed.

Although RANSAC turned out to be surprisingly robust with respect to outliers and
noise, in our experiments, it achieved so only with 1000 iterations. Hence, most of the
time was spent in RANSAC when recognizing objects in a scene, compared to the nearest-
neighbour search with Locally-Sensitive Hashing, or to the negligible amount of time spent
in generating local 2D features with Oriented BRIEF.

CLUTSEG and TOD use randomized and approximate algorithms, and can cope with noisy
data. They are exposed to high levels of uncertainty. This calls for a statistical anal-
ysis, which can only be accomplished if the systems are designed from the beginning to
incorporate methods for collecting statistical data.

5.2. Contribution

We have helped to fix some issues with TOD, ROS and OPENCV. We provided a test case that
helped to make the SIFT implementation in OPENCV respect the image mask provided when
extracting features using SIFT. A problem with the DynamicFeatureAdaptor in OPENCV

which adaptively tries to extract a pre-specified number of features from an image was fixed
soon after our bug report. We have helped improve the YAML implementation for OPENCV
2.3, and reported some usability issues for the point cloud viewer in ROS. A number of issues
have been fixed with our help in TOD.

We have given an early introduction to the new Oriented BRIEF feature detector and
descriptor in OPENCV, and have shown that it outperforms SIFT and SURF in terms of speed
in our experiments. We have demonstrated that Oriented BRIEF can be used together with
Locality-Sensitive Hashing.
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We formulated the problem of estimating the pose of an object in terms of camera cali-
bration and showed how it can be reduced to solving the perspective-n-point problem. We
showed how RANSAC, when used for solving the perspective-n-point problem, can find bad
solutions in case the projection error threshold on the image plane is chosen too large.

We presented the use of dithered binary images in camera calibration with chessboard-
based fiducial markers in order to achieve more reliability in the chessboard detection.

We implemented CLUTSEG to transform the experimental TOD library into a towards a
system that reveals its inner workings. We discussed the issues that showed up in its
evaluation, without hiding that many problems still remain to be solved.

We provided an experiment runner that served as a robust tool for optimizing the system
parameters. Our experiments verified the assumption that it is a good idea to base con-
fidence values on the number of correspondences that are consistent with pose estimates,
and that starting from a fairly inexact set of initial guesses, we can obtain a guess with high
confidence by refining the initial guess with the highest ranking.

5.3. Future Work

Our experiments suggest a number of improvements. The collection of raw data for models
can be improved. We could do away with the fiducial markers by rotating the objects with
a robotic manipulator. The ground truth can be computed by the transformations that
correspond to the joints of the robotic manipulator. This should get rid of the systematic
error we observed in our collected models. Certainly, it simplifies the collection of raw data,
as there is no longer the need to prepare a rotating table with fiducial markers, and no
need to provide a description to the robot on how to recover the ground truth from fiducial
markers. Furthermore, a robotic manipulator (grasping the object) permits to move the
template object in all six degrees of freedom. Hence, the models could include model features
extracted from a template object in arbitrary orientations; thus accounting for the objects
to appear in arbitrary orientations in the query scenes.

The performance of TOD and CLUTSEG is not yet sufficient to robustly recognize objects in
a cluttered scene in which objects appear in arbitrary orientations and high occlusion rates
(see Figure 1.1 a, Figure 4.5).

One idea would be to take the uncertainty in the correspondences into account. We can
weigh correspondences according to the distance between query feature descriptor and model
feature descriptor. We let RANSAC draw correspondences randomly with probabilities
proportional to the weights, instead of drawing from a uniform distribution. This way,
RANSAC will more often consider close correspondences between the query image and
the modelbase; we expect that this permits to run RANSAC with fewer iterations. Even
more, the confidence value for a pose can be computed from the sum of weights of all
those correspondences that are consistent with this pose, a voting scheme that accounts
for uncertainty. These ideas about taking uncertainty into account are not new; a method
based on model feature uncertainty, and which also involves weighting correspondences is
presented in [17].

Whichever method is used, experiments will tell which method works best. These ex-
periments require the availability of the ground truth for test scenes. The collection of
ground truth in this work has been limited to multiple objects standing upright on a table.
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Future work should involve computing the ground truth for scenes with objects in arbitrary
orientations.

Finally, much of the data observed from a query scene is not being used. The information
gained by extracting local features from the 2D appearance could be supplemented by also
considering features from the 3D shape of objects.
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A. Classes

The following table lists selected classes in CLUTSEG and its dependencies that are related
to concepts mentioned in this work. This mapping is meant to provide a rough guidance
that helps close the gap to the implementation.

Package Class Corresponds to

tod Features2d set of local 2D features extracted from a single image
tod Features3d set of model features extracted from a single view
opencv_candidate Camera camera model, including extrinsic parameters
opencv_candidate PoseRT proper rigid transformation
opencv_candidate Pose proper rigid transformation
tod TrainingBase modelbase
tod_detecting Guess guess
tod_detecting GuessGenerator pose estimation
clutseg Experiment experiment
clutseg Paramset set of parameter values
clutseg Response result of an experiment
clutseg GuessRanking guess ranking
clutseg ResponseFunction performance measure

Table A.1.: A mapping between the terminology in the theory and in the implementation.
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B. Bug Reports

This is a list of related bug reports filed in the course of this work. For most of them,
patches have been supplied.

Library Issue Title

OPENCV 1044 SiftFeatureDetector::detect ignores mask parameter
OPENCV 1127 cv::Exception when reading empty YAML file
OPENCV 1169 ORB n features=0
ROS 5072 pcd viewer in pcl visualization fails to load files in directories end-

ing on .pcd
ROS 5073 pcd viewer in pcl visualization does not restore terminal state

when sent to background
TOD 5083 Getting OpenCV errors when using recognizer in tod detecting
TOD 5084 train all.py in tod training is broken and probably redundant
TOD 5085 frecognizer in tod detecting fails with ”Assertion ‘pos <

m num bits’ failed.”
TOD 5086 description of command-line options of frecognizer in

tod detecting is out-dated
TOD 5093 Matcher::add uses object indices rather than object identifiers
TOD 5097 drawProjections in GuessGenerator is broken
TOD 5103 tod training detects features outside of region of interest
TOD 5104 frecognizer detects way too many keypoints
TOD 5111 Workaround for OpenCV 1044: Features outside of mask included

in training
VSLAM 5056 Seed is not initialized for RANSAC random number generator in

vslam/posest

Table B.1.: Related bug reports.
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C. Hardware and Software Setup

Component Type

Mainboard ASUS K8V SE Deluxe
CPU AMD Athlon64 3000+ S754
RAM 1 Gigabyte DDR-RAM
OS Ubuntu 10.10 Maverick

Table C.1.: The hard- and software configuration for parameter optimization.

Component Type

CPU Intel Core i5-560M
RAM 2 Gigabyte DDR3
OS Ubuntu 10.10 Maverick

Table C.2.: The hard- and software configuration for computation speed benchmark.
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Glossary

aligned model a model inserted into the scene with a certain pose. 3

camera coordinate system describes 3D points relative to the camera. 6

camera-object transformation transforms coordinates from the camera coordinate system
into the object coordinate system. 6

confidence value size of the consensus set found by RANSAC. 3

correspondence a supposed match between a query feature and a model feature; found by
nearest-neighbour search. 3

guess a pose estimate for a specific object; has a confidence value. 3

guess ranking orders guesses by a measure of “goodness”, for example by confidence value.
21

guess refinement tries to estimate the pose of a specific object in the scene as accurate as
possible. 23

guess rejection rejects a guess if it is not “good” enough, for example if it has a too low
confidence value. 23

guess score assigns a score that describes the distance of a guess to the ground truth in a
scene. 27

inlier a correspondence that is consistent with a pose estimate up to a certain margin of
error; member of the consensus set returned by RANSAC. 13

model feature a local feature; the basic building block for a model of a template object. 3

object coordinate system describes the 3D points of an object or a model. 6

object-camera transformation transforms coordinates from the object coordinate system
into the camera coordinate system. 6

query feature a local 2D feature extracted from a query image. 3

query image the image of a query scene taken by the camera. 3

query scene a scene under investigation where objects are to be recognized. 3

template object used for learning a model, as opposed to the instances in a query scene. 3

57





Bibliography

[1] T. Tuytelaars and K. Mikolajczyk, “Local Invariant Feature Detectors: A Survey,”
Foundations and Trends in Computer Graphics and Vision, vol. 3, no. 3, pp. 177–280,
2007.

[2] D. G. Lowe, “Object Recognition from Local Scale-Invariant Features,” in Proceedings
of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–
1157, IEEE, 1999.

[3] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,”
Machine Learning, vol. 1, no. 1, pp. 1–14, 2006.

[4] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF : Binary Robust Independent
Elementary Features,” in Computer Vision - ECCV 2010 (K. Daniilidis, P. Maragos,
and N. Paragios, eds.), vol. 6314 of Lecture Notes in Computer Science, pp. 778–792,
Springer, 2010.

[5] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: an efficient alternative to
SIFT or SURF,” in Proceedings of the 13th IEEE International Conference on Com-
puter Vision, 2011. To appear.

[6] A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High Dimensions via Hash-
ing,” in Proceedings of the 25th International Conference on Very Large Data Bases,
VLDB ’99, (San Francisco, CA, USA), pp. 518–529, Morgan Kaufmann Publishers
Inc., 1999.

[7] M. Slaney and M. Casey, “Locality-Sensitive Hashing for Finding Nearest Neighbors,”
Signal Processing Magazine, IEEE, vol. 25, pp. 128 –131, March 2008.

[8] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography,” Communi-
cations of the ACM, vol. 24, pp. 381–395, June 1981.

[9] M. Dogar and S. Srinivasa, “Push-Grasping with Dexterous Hands: Mechanics and a
Method,” in Proceedings of 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2010), pp. 2123–2130, October 2010.

[10] D. Forsyth and J. Ponce, Computer Vision: A Modern Approach. Pearson Education,
2003.

[11] R. C. Gonzalez and R. E. Woods, Digital Image Processing. New Jersey: Pearson
Prentice Hall, Third ed., 2010.

[12] E. Alpaydin, Introduction to Machine Learning. MIT Press, 2 ed., 2010.

59



Bibliography

[13] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters, vol. 27,
no. 8, pp. 861 – 874, 2006.

[14] J. Melsa and D. Cohn, Decision and estimation theory. McGraw-Hill, 1978.

[15] PrimeSense, “PrimeSensor Reference Design 1.08 Datasheet,” 2010.

[16] A. I. R. Galarza and J. Seade, Introduction to Classical Geometries. Birkhäuser, 2007.
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