
Nonlinear Clustering on Sparse Grids

Interdisciplinary Project (IDP)

Julius Adorf, Technische Universität München

August 13, 2012

Abstract

This work applies a recent sparse-grid-based spectral
clustering method to the problem of unsupervised im-
age segmentation. The applicability of the method is
tested on synthetic images, as well as on images from
the Berkeley Segmentation Dataset. The impact of
parameters is examined, focusing on the level of the
sparse grid, the number of clusters, and the width of
the similarity kernel. Serving as an automated alter-
native to manual model selection, the balanced linefit
criterion is tested. The effects of hierarchical surplus
refinement are studied and compared with variants
introduced in this work, aiming at achieving good re-
sults with few grid points.

Contents

1 Introduction 1

2 Prerequisites 3

3 Method 5

4 Evaluation 9

5 Conclusion 18

1 Introduction

1.1 Problem

Clustering methods have been applied to many prob-
lems in medicine, biology, business, and computer
science. As an unsupervised machine learning tech-
nique, cluster analysis discovers structure in data
without having prior knowledge gathered on a ground
truth dataset.

A particular application of clustering is the seg-
mentation of images, which is a common, but difficult
task in image analysis and computer vision. In im-
age segmentation, cluster analysis shall find groups
of pixels. What kind of grouping is desirable varies
widely with the intended purpose. This technical re-
port focuses on images from the Berkeley Segmenta-
tion Dataset, such as shown in Figure 1 (left). A de-
sirable segmentation is presented in Figure 1 (right),
where the boundaries closely match the boundaries
perceived by humans.

Images contain much data. The original picture of
Figure 1 (left) consists of 481× 321 ≈ 150.000 pixels.
A nonlinear, spectral clustering approach to image
segmentation is presented by Shi and Malik [1], who
cluster the pixels by solving an eigensystem. The size
of the eigensystem is given by the number of pixels.

The data in a digital image is usually arranged in
a full two-dimensional grid. For 3D medical imaging,
the full grid even spans three dimensions. The num-
ber of grid points in full grids of higher dimensions
render the spectral decomposition of a data-derived

1

Figure 1: A test image from the Berkeley Segmenta-
tion Dataset (left), and a possible manual segmenta-
tion (right).

similarity matrix infeasible.
Peherstorfer et al. [2] propose a spectral clustering

approach where eigenfunctions on a sparse grid are
learned and can be evaluated at any other point in
the domain. The key is that the size of the eigen-
system depends on the number of sparse grid points
rather than the number of data points. This is a
prospective method to counter the so-called curse of
dimensionality.

In this technical report, the image segmentation
problem serves as an application of the spectral clus-
tering method on sparse grids, as proposed by Pe-
herstdorfer et al. [2]. Their proposed method and
their corresponding implementation is applied, eval-
uated, and extended in this work.

Section 2 summarizes the required theory that
leads to the spectral clustering method by Peherstor-
fer et al. [2]. Section 3 describes the actual method,
and the extensions added in this work. Section 4
presents the results, and draws conclusions.

1.2 Related Work

In some datasets, such as the synthetic one shown
in Figure 2, the clusters cannot be separated by hy-
perplanes. In these cases, more powerful, nonlinear
methods are sought after. The spectral clustering
algorithm by Shi and Malik [1] approximates an op-
timal normalized cut in a similarity graph derived
from the data. Belkin and Niyogi [3] introduce the
closely related Laplacian Eigenmaps for dimensional-
ity reduction, where data is non-linearly mapped to
a low-dimensional latent space. In that space, linear

clustering methods can be applied again. Alzate and
Suykens [4] formulate spectral clustering in terms of
weighted kernel principal components analysis, and
keep computational costs low by only solving the in-
volved eigensystem on a subsample of the data. The
remaining out-of-sample data is mapped into latent
space by projecting it onto the eigenvectors. Another
out-of-sample extension is presented by Fowlkes et
al. [5], who assign out-of-sample data to clusters via
eigenfunctions based on the subsample.

Figure 2: A synthetic, not linearly separable, dataset
showing two moons, clustered with the spectral
method as described by Alzate and Suykens [4].

However, if the data, as in images or volumetric
datasets, comes from a full grid, the size of the eigen-
systems in the methods by Alzate and Suykens [4],
as well as by Fowlkes et al. [5] grows linearly with
the number of data points in the subsample. In con-
trast, this work builds upon the spectral clustering
approach by Peherstorfer et al. [2], who solve an
eigensystem for the coefficients of sparse-grid-based
eigenfunctions. As mentioned before, the size of the
involved eigensystem here depends on the number of
points in the sparse grid rather than the size of the
subsample.

The spectral clustering methods mentioned in this
report are all based on some modified similarity ma-
trix. For image segmentation, building a similar-

2

ity matrix requires a useful similarity measure be-
tween pixels. Fowlkes et al. [5], as well as Alzate and
Suykens [4] use local color histograms computed on
color-quantized images. This path is also taken in
this work. For background on color quantization, see
the work by Heckbert [6], and by Wu [7].

Martin et al. [8] provide the Berkeley Segmenta-
tion Dataset 300 (BSDS300), which contains a set of
training images, and a set of test images. The dataset
is equipped with ground truth data, which has been
obtained from manual segmentations.

2 Prerequisites

The sparse-grid-based spectral clustering approach
using Laplacian Eigenmaps [2] builds upon many ex-
isting concepts. This section summarizes the theory
behind these concepts. It comprises cluster analysis
(Section 2.1), image segmentation (Section 2.2), spec-
tral clustering (Section 2.3), and sparse grids (Sec-
tion 2.4).

2.1 Clustering

In clustering, a dataset X = {xt}Mt=1 shall be parti-
tioned into k clusters, such that similar points end
up in the same cluster, and dissimilar points are sep-
arated into different clusters.

First, it is curious that the number of clusters is
part of the question rather than part of the answer.
Indeed, some clustering applications determine the
ideal number of clusters through automatic model se-
lection, whereas in other applications, the number of
clusters needs to be manually specified.

Second, the objective function needs to be formu-
lated. To this end, let us define a a similarity mea-
sure sij ≥ 0 that specifies the similarity between
the i-th and the j-th data point. An objective func-
tion then maximizes intra-cluster similarity and min-
imizes inter-cluster similarity. The exact method,
and the pursued trade-off between these two goals
is application-dependent.

2.2 Image Segmentation

This work focuses on image segmentation through
clustering. In such a case, the dataset is formed by
the pixels. The choice of similarity between the pixels
is non-trivial.

One possible choice is to compute the X 2 distance
between local color histograms, and then to weight
the distance with a radial basis function kernel in
order to obtain a similarity measure. This is the path
taken by Fowlkes et al. [5], which we will follow in this
work.

First, the image is quantized into B colors such
that each color histogram has B bins. The his-
tograms are computed within a W ×W square neigh-
borhood. The value hib denotes the b-th bin value for
the i-th pixel. When computing these histograms, a
small positive value is added to empty bins such that
hib > 0. Then, distances wij between pixels can be
obtained by Equation 1.

wij =
1

2

B∑
b=1

(hib − hjb)2

hib + hjb
(1)

Second, the weights wij are fed into a radial-basis
function with parameter σ.

sij = exp
(
−wij

σ

)
(2)

2.3 Spectral Clustering

Spectral clustering methods are based on the solu-
tion of an eigensystem. They aim at partitioning
the similarity graph, where the data points form the
nodes, and the similarity measure assigns weights to
the edges.

Spectral clustering can be derived from the normal-
ized cut criterion [1]. Unlike the global minimum cut,
the normalized cut penalizes unbalanced clusters, in-
stead of only minimizing the sum of edge weights in
the cut. Finding the optimal normalized cut in the
similarity graph is NP-complete [1].

One particular spectral clustering approach is pre-
sented here, because it lays ground for Section 3.1.
Assume the similarity graph to be connected. Let
S ∈ RM×M the adjacency matrix of the similarity

3

graph, called the similarity matrix. Let the diagonal
matrix D ∈ RM×M be the degree matrix formed by
the row sums of S. Then, playing a central role, the
graph Laplacian L ∈ RM×M is defined by L = D−S.

In the normalized spectral clustering algorithm [9],
an approximative solution to the normalized cut is
obtained by minimizing the generalized rayleigh quo-
tient (see [3, 9])

min
v

vTLv

vTDv
s.t. vTD1 = 0 ∧ ||v||2 = d (3)

where d is some constant, and 1 denotes the vec-
tor of ones. This minimization problem is solved by
computing the eigenvector v(2) corresponding to the
second-smallest eigenvalue of the generalized eigen-
system (see [9])

Lv = λDv. (4)

The final cluster assignment is obtained by thresh-
olding the eigenvector v(2) at zero. For example, the
i-th data point is assigned to the first cluster if and

only if the component v
(2)
i is negative.

The scheme can be extended to multiway spectral
clustering. Let the eigenvectors v(j), j ∈ 1...M of
Equation 4 be sorted by eigenvalue in ascending or-
der. The first eigenvalue is zero, the corresponding
eigenvector v(1) is the vector of ones, and hence is of
no interest. Let A =

[
v(2)...v(k)

]
be the RM×(k−1)

matrix obtained by stacking the eigenvectors corre-
sponding to the k − 1 smallest non-zero eigenvalues
horizontally. The entries of matrix A are called score
variables, and they provide a new low-dimensional
description of the data.

In the last step, reclustering the rows of matrix A
provides the final clustering assignment, for example
by using k-means. This is possible because similar
points in the original space are mapped to nearby
points in low-dimensional space [3].

2.4 Sparse Grids

This section gives a brief introduction into the prin-
ciples of sparse grids. For a comprehensive treat-
ment of sparse grids, see the work by Bungartz and

Griebel [10]. A shorter introduction is given by Ger-
stner and Griebel [11].

Treating a function numerically on a digital com-
puter requires a discretization scheme. For example,
a digital camera discretizes an image by sampling the
image in each dimension in regular intervals, forming
a full grid. The intensity values are stored at the
points of the full grid.

A full grid is subject to the curse of dimensionality.
If some function in d dimensions is modeled on a full
grid with N grid points in each dimension, then the
total number of grid points is Nd.

However, a function on a sparse grid can approx-
imate a function on a full grid. Note that in this
work, we don’t want to find another way to represent
the image, but rather find eigenfunctions that help
finding good clusters. Using sparse grids, the num-
ber of grid points can be significantly reduced. In the
following, only 2D sparse grids will be discussed.

Sparse grids are constructed hierarchically. Regu-
lar sparse grids exist at different levels, and each level
adds new grid points in a principled manner. For ex-
ample, a sparse grid of level 1 consists of only one
grid point in the center of the domain, as shown in
Figure 3 (a). A sparse grid of level 2 consists of 5 grid
points: the level 1 grid, plus the grid points shown in
Figure 3 (b, c). A level 3 grid is depicted in Figure 5,
and the triangular scheme can be extended to grids
of higher levels.

Figure 3: The grid points of a regular sparse grid of
level 2, and the supports of the corresponding basis
functions.

A basis function is centered at each grid point. The
support of these basis functions varies with the level
at which the grid points were introduced. In the clas-
sic approach, the basis functions are the products of

4

simple hat functions. For example, the grid points
shown in Figure 3 have corresponding pagoda-shaped
basis functions as depicted in Figure 4.

Figure 4: The pagoda-shaped basis functions of a
regular sparse grid of level 2.

The sparse grids that have been discussed so far
assume a homogeneous zero boundary. There are dif-
ferent ways to treat the boundary in cases, where this
assumption does not hold. In this work, we use a lin-
ear boundary grid.

Sparse grids can be adaptively refined in regions
that require higher resolution. This will be discussed
in Section 3.2.

We use SG++1 as a framework for sparse grids. It
offers regular grids, adaptively refined grids, various
boundary types, and efficient routines for evaluating
the grid functions.

3 Method

3.1 Spectral Clustering on Sparse
Grids

Peherstorfer et al. [2] introduce a new spectral clus-
tering approach on sparse grids. The score variables
are generated by eigenfunctions. These eigenfunc-
tions are based on the sparse grid.

It is sadly infeasible to apply the classic spectral
clustering approach discussed in Section 2.3 straight-
away to all pixels in the image. Peherstorfer et al. [2]
address this problem in two steps: First, the data is
split into a small training set and a large testing set
such that the expensive operations are computed on

1http://www5.in.tum.de/SGpp

Figure 5: A triangular scheme that shows the con-
struction of a sparse grid in two dimensions. The
simple hat functions are used to construct basis func-
tions for each grid point. The supports of these basis
functions are shown in the figure.

the training set only, and the testing set is treated
cheaply by an out-of-sample extension. Second, in-
stead of the score variables (see Section 2.3), it is the
coefficients of sparse-grid-based eigenfunctions that
are computed from an eigensystem. The obtained
eigenfunctions can then be evaluated efficiently in or-
der to generate the score variables for both the train-
ing set and the testing set.

On two-dimensional domains and with two-way
clustering, the intuition behind this approach can be
illustrated by looking at one eigenfunction. Such an
eigenfunction can be visualized as a mountain land-
scape. This eigenfunction should have similar func-
tion values at locations where pixels are similar. In
this report, the k-means algorithm is used for reclus-
tering the score variables. As such, in this example
with only one eigenfunction, k-means would find iso-
lines in this mountain landscape that separate the
two clusters. The question remains on how to obtain
eigenfunctions with such qualities.

Here is the method from Peherstorfer et al. [2], de-
scribed in the context of the two-dimensional domain

5

of images. Note that this method includes a regular-
ization term, which we omit in this discussion. The
method works as follows: let M ∈ N be the number
of pixels in the training set. Let N ∈ N be the num-
ber of grid points in the sparse grid, which is also the
number of basis functions φn : R2 → R, n ∈ 1 . . . N .
The vector α ∈ RN denotes the sought-after coeffi-
cients for these basis functions. The wanted function
on the sparse grid then can be written as

f(x) =

N∑
n=1

αnΦn(x) (5)

Since the function f is linear in the coefficients,
Equation 5 can be rewritten for the i-th train-
ing location xi as f(xi) = bTi α, where bTi =
(Φ1(xi) . . .ΦN (xi)). Hence, if the vectors bTi form
the rows of a matrix B ∈ RM×N , then the function
values v ∈ RM of at the training locations can be
written as

v = Bα. (6)

Plugging this into Equation 3 gives

min
α

αTBTLBα

αTBTDBα
(7)

This way, one arrives at the generalized eigensys-
tem proposed by Peherstorfer et al. [2, Equation 6]

BTLBα = λBTDBα. (8)

In this report, the eigensystem in Equation 8 is
solved for the k − 1 eigenvectors that correspond to
the smallest positive eigenvalues. These eigenfunc-
tions are then evaluated for both training data and
testing data, giving the score variables as the input
to the k-means algorithm.

The straight-forward implementation of Equa-
tion 8, as it is used in this report, constructs the
system matrices BTLB and BTDB explicitly. Fig-
ure 6 sketches the matrix BTLB in order to em-
phasize the involved matrix dimensions. Both ma-
trices are fed into a generalized eigensystem solver
implemented in the GNU Scientific Library under the
name gsl_eigen_genv. The matrix product BTLB
is in O(M2N + MN2) time, whereas the product

Figure 6: A schematic figure showing the sizes of the
matrices BT , L, B and BTLB in Equation 8.

BTDB takes only O(M2N) time because D is di-
agonal. Solving the real non-symmetric generalized
eigensystem takes O(N3) time, where the size M
of the training set is not relevant. Altogether, this
makes O(M2N+MN2 +N3) time for setting up and
solving Equation 8.

3.2 Adaptive Grid Refinement

The number of grid points should be small in order
to keep computation times short. At the same time,
however, it might be necessary to increase the reso-
lution of the sparse grid. Adaptive grid refinement
balances between these two contrary objectives by
spending more grid points only in regions where it
seems necessary.

This section discusses the impact of the grid res-
olution on the clustering results, describes adaptive
grid refinement based on hierarchical surplus, and in-
troduces methods for adding new training instances
after refining the grid.

The spatial proximity of pixels influences their as-
signment to clusters for at least three reasons. First,
nearby pixels are likely to originate from the same
object in the image, and are likely to have similar ap-
pearance, which might be reflected in the computed
histogram features. Second, when computing the lo-
cal color histograms, the windows overlap for nearby
pixels. Third, the resolution of the sparse grid in-
duces a smoothness constraint on the score variables
for nearby pixels.

Hierarchical surplus refinement chooses to refine
those grid points with the largest absolute coefficients
|αi|, where αi is also called hierarchical surplus. In

6

this work, Equation 8 is solved multiple times. In
each iteration, the grid is refined at grid points with
maximum surplus. The information gained at grids
with fewer grid points is exploited for the next itera-
tion.

Adding grid points introduces additional degrees
of freedom. It seems natural to also include more
training data after refining the grid such that these
freedoms can be determined with enough support
from the training data. We propose three variants
of adding new training instances after refining the
grid, and will later see whether this intuitive idea is
successful in practice. The variants are sketched in
Figure 7.

It is common to all three proposed variants that,
after solving Equation 8 in the i-th iteration, we re-
fine the grid, thereby introducing ni new grid points.
Then, for each new grid point, we sample a constant
number c of pixels from a certain region. The c · ni
pixels in total are added to the training set, which
influences the next iteration.

The first variant is the simplest of all three: for
each new grid point we sample c · ni pixels randomly
from the whole image. The second variant samples c
pixels for each new grid point within the support of
its basis function. The third variant samples c pixels
in a circle of fixed radius around each new grid point.

Figure 8 sketches the pipeline with all the stages
required to produce the segmentation image from the
input image. Except for the stage where new train-
ing points are added, an implementation has been
provided by Benjamin Peherstorfer.

3.3 Model Selection

Some parameters of the algorithm have a large impact
on the results. Even more, for some parameters, good
parameter values vary from image to image. If this
is the case, such as with the number of clusters k
and the kernel parameter σ, then automatic model
selection can help in choosing parameters for a given
image.

As a model selection criterion, we adopt the bal-
anced linefit [4] in order to estimate the goodness of
clustering on a validation set. In this application sce-
nario, the validation set is formed by pixels sampled

Figure 7: An illustration of the three variants
for adding new training points, assuming a zero-
boundary regular grid that consists of only one grid
point before refinement. After refining this grid
point, four new grid points (green) are added. For
the new grid point to the right, the figure shows the
newly added training pixels as freckles. The addi-
tional training pixels for the three other new grid
points are not shown.

from the image.
The balanced linefit is a linear combination of two

measures; the balance is the ratio between the sizes
of the smallest and the largest cluster. The linefit
measures collinearity of the score variables for each
cluster.

blf = η linefit + (1− η) balance (9)

The balance is computed from the clusters
{A1, ...,Ak} in the validation data.

balance =
minp |Ap|
maxp |Ap|

(10)

Let Zp ∈ R|Ap|×(k−1) be the centered validation
scores for the p-th cluster. Then the principal eigen-
values τp,i of the centered validation scores Zp cap-
ture the amount of variance in the principal compo-
nents. For k > 2

linefit =
1

k

k∑
p=1

k − 2

k − 1

(
τp,1∑
i τp,i

− 1

k − 1

)
(11)

The case k = 2 requires special treatment. Al-
though Alzate and Suykens [4] show how to do this
with weighted kernel principal components analysis,

7

Figure 8: A schematic overview of the clustering
pipeline.

it is not clear how to transfer the extension for k = 2
to the context of the discussed algorithm.

In principle, the eigenvalues for Equation 11 can be
obtained by solving of 1

|Ap|ZpZ
T
p v = τp,iv. However,

in our implementation, we compute the singular value
decomposition of the centered validation scores Zp in-
stead, using the gsl_linalg_SV_decomp_mod routine
in the GNU Scientific Library. Thus, the sample co-
variance matrix does not need to be computed.

The squares of the singular values of Zp are equal
to the eigenvalues of the covariance matrix 1

|Ap|ZpZ
T
p ,

but only up to scale. The scale does not matter in
Equation 11, as it is cancelled out in the ratio.

The boundary case, in which the sample validation
data does not contain any instances assigned to a
particular cluster p, needs to be treated as well in
the implementation. Alzate and Suykens [4] do not

specify this case, so we suggest to just set the p-th
summand in Equation 11 to zero, thereby indicating
that a clustering with “empty” clusters is no good.

In order to obtain good parameters for a particular
test image through automatic model selection, we can
cluster the data with different parameter values, and
then select the clustering with the highest balanced
linefit. This means that all stages in the algorithm
that depend on these parameters need to be re-run.

3.4 Cluster Evaluation

It is useful to be able to quantitatively assess the
results of the segmentation algorithm. The Berke-
ley Segmentation Dataset 300 ships with code2

that quantitatively compares computed segmenta-
tion boundaries with boundaries marked by humans,
in the following referred to as ground truth. The
ground truth for a single image consists of a proba-
bility boundary map, which specifies the probability
for each pixel that it belongs to a boundary. Precision
and recall are calculated from the computed bound-
ary map and the ground truth boundary map. The
final reported quantity is the F-measure, which is the
harmonic mean of precision and recall. A graph of
the F-measure versus precision and recall is shown in
Figure 9.

3.5 Experiment Runner

Any machine learning algorithm requires the selec-
tion of suitable parameter values. In the discussed al-
gorithm, the number of algorithm parameters is quite
large. The dimensionality of the parameter space can
be reduced by fixing the values of parameters that
supposedly have low impact. Instead, we concentrate
on choosing good values for parameters with suppos-
edly high impact on the results. We implemented an
experiment runner that helps understand the impact
of parameters.

The experiment runner is fairly basic. While grid
search is desirable, it is computationally expensive,
and an extensive quantitative analysis is mostly out of
scope in this work. The experiment runner supports

2
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds

8

Figure 9: A 3-dimensional plot of the F-measure ver-
sus precision and recall.

testing different values for a single parameter at a
time. This is relevant to the evaluation in Section 4,
because many of the presented results are reported
on the margins of the parameter space.

However, the experiment runner is well-suited for
obtaining preliminary qualitative results. It is well-
equipped for the visual inspection of segmented im-
ages. Input, output, and various statistics are col-
lected in a principled manner in a database.

4 Evaluation

This section discusses the results of the clustering
algorithm. The main purpose is to gain a better
understanding of the new clustering approach with
eigenfunctions learned on a sparse grid. Effects of the
grid level are described in Section 4.4. The methods
for adaptive grid refinement, including those intro-
duced in this report, are treated in Section 4.5 and
Section 4.6. Results on the Berkeley Segmentation
Dataset are given in Section 4.8. The balanced linefit
criterion for model selection is subject of Section 4.7.
Finally, the performance is discussed in Section 4.10.
The primary goal is to obtain qualitative results.

4.1 Data for Evaluation

We use synthetic toy examples in order to gain in-
sights because these simple data make reasoning eas-
ier. In parallel, the algorithm is evaluated on five
test images from the Berkeley Segmentation Dataset
300 (BSDS300). It is important to note that we are
not comparing our results on these five images to
other methods evaluated on these test images of the
BSDS300. It is more like asking: given the test im-
ages, how far can we take the system to produce good
results, without introducing a too large bias? An-
swers to this question, together with the performance
published in related work on the test images, might
indicate in which directions to go in future work.

Figure 11: Two synthetic toy images (the borders are
not part of the data).

The toy examples comprise the tricolor image (Fig-
ure 11, left), and the shapes image (Figure 11, right).
The tricolor image exhibits discontinuities in one di-
rection, while the shapes image shows discontinuities
in various directions. The perfect segmentation can
be directly seen on these toy images.

For more complex data, we consider the images
elephant , bird , pyramids, surfer , and parade (Fig-
ure 10, from left to right, from top to bottom) in the
BSDS300.

4.2 Visual Assessment

Throughout Section 4, we often blend the original
image, the segmentation image, a plot of the sparse
grid, and a plot of the training set into a single image
in order to make it easier to assess the results visu-
ally. For example, on any of the images in Figure 12,
one can recognize the original image faintly in the
background. The clusters are drawn in semi-opaque

9

Figure 10: Five test images from the Berkeley Segmentation Dataset 300.

colors, the training points are drawn as freckles, and
the grid points as small black crosses.

4.3 Parameters for Evaluation

The clustering algorithm described in Section 3 has
several parameters. Table 1 lists all parameters that
are fixed for all experiments. All images have the
same size. The width and the height of the win-
dow used for computing the local color histograms
is fixed. The pixels at the margin, where the his-
tograms cannot be computed without padding the
image, are discarded in the implementation. The
histograms for the images from the BSDS300 all
have eight bins, whereas those of tricolor have three
bins, and those of shapes have four bins. The ini-
tial training set is always sampled randomly from
the image without replacement. The size of the
training set varies, but is usually chosen to be less
than 6% of all pixels. All experiments are con-
ducted with a linear boundary grid, using the rou-
tine Grid::createLinearBoundaryGrid in the SG++

framework. The regularization parameter λ is fixed.
Table 2 show the varying parameters. Table 7 lists
the parameter values for all experiments referenced
in this report. Note that nα equals k in some exper-
iments. This is for historical reasons.

4.4 Different Grid Levels

One objective of this work is to achieve good results
with few grid points. First, we test regular sparse
grids with linear boundaries at different grid levels
in order to see what level is sufficient to obtain good
segmentations without refinement.

Figure 12 shows the results for images elephant ,
bird , and surfer . The images were tested at regular

Parameter Value

image width 481

image height 321

window size 5

grid boundary linear

regularization λ 0.1

Table 1: Parameters that are the same for all exper-
iments presented in the evaluation.

Parameter Variable

kernel parameter σ

number of clusters k

considered eigenvectors nα

initial grid level l

refinement steps nr

refinement percentage r%

additional training instances c

maximum refinement level rmax

Table 2: Parameters that vary for the experiments
presented in the evaluation.

grids ranging from levels 3 to 8. The results indicate
that a regular grid of level 7 is appropriate for these
images because the results for levels 6 and 7 differ
widely, while there is little visible change between
levels 7 and 8.

Table 3 lists the number of grid points for each
level of grids with linear boundaries. For the levels
listed, the grid size at least doubles with each level.
Hence, the selection of a good level can save vast
computational efforts. Note that the reported levels
and grid sizes are consistent with the levels used in

10

Figure 12: Segmentation results at grid levels ranging from 3 to 8 for the images elephant , bird , and surfer .

11

grid level 2 3 4 5 6 7 8 9

inner points 1 5 17 49 129 321 769 1793

boundary points 16 32 64 128 256 512 1024 2048

grid points 17 37 81 177 385 833 1793 3841

Table 3: Number of grid points for regular grids with linear boundaries at different levels.

the SG++ framework.

4.5 Adaptive Refinement Results

This section shows results of the adaptive refinement
strategies, which have been described in Section 3.2.
We first look at the hierarchical surplus refinement
alone, and then move on to the extensions where
training points are successively added in each iter-
ation.

For a beginning, we show the effects of hierarchi-
cal surplus refinement on the tricolor image, because
this toy example shows clear segmentation bound-
aries that should correspond to sharp edges in the
learned eigenfunctions. We start with a level l = 2
grid and refine nr = 3 times. Figure 13 (top) shows
the segmentation result. As expected, the algorithm
segments the simple image perfectly. The grid has
high resolution at the true segmentation boundaries.
Notably, the refined grid points increase the resolu-
tion in the second dimension.

When the size of the training set is too low com-
pared to the number of grid points, then overfitting
occurs. Figure 13 (bottom) shows an example for
such overfitting. It indicates that high resolution
should be backed by a large enough training set.

Next, we look at the elephant , the bird , and the
surfer in order to check for patterns in the refined
grids. The initial grid is a regular level 4 grid, and
10% of all grid points are refined after each step. Fig-
ure 14 shows the segmentation results for the elephant
(left) after five refinement steps, and the results for
both the bird (center) and the surfer (right) after
six refinement steps. The resolution is high in areas
which correspond to computed segmentation bound-
aries. Conversely the grid resolution is low in areas
where the pixels have been assigned to the same clus-
ter. In this case, the areas of high resolution cover

Figure 13: Segmentation results for the tricolor im-
age with adaptive refinement.

the true boundaries of the objects in the image.

Finally, we compare the number of grid points in a
refined grid and a comparable regular grid. Figure 15
shows the result of an experiment with the elephant ,
the bird , and the surfer . In the left two columns, re-
sults on regular grids at level 6 and level 7 are given.
The right column shows qualitatively similar results
on refined grids. Table 4 lists the number of grid
points on the refined grids. Both the regular grids
at level 7 and the refined grids lead to better seg-
mentations than the regular grid at level 6. However,
the refined grids require about 350 fewer grid points
than the level 7 grid in order to achieve the same
improvement over the level 6 grid.

12

Figure 14: Segmentation results for the elephant image (left), the bird image (center), and the surfer image
(right) on excessively refined grids.

Figure 15: Segmentation results on a regular grid of level 6 (left column), on a regular grid of level 7 (center
column), and on an adaptively refined grid with fewer grid points than a regular grid of level 7 (right column).

13

image refined grid refinement steps

elephant 499 2

bird 497 3

surfer 514 3

Table 4: Listing of the number of grid points for the
images in the right column of Figure 15.

4.6 Additional Training Instances

This section evaluates the three variants of the al-
gorithm which add new training instances (see Sec-
tion 3.2). Adding training points only within the sup-
port of the basis functions around new grid points
turned out to degrade the results. The problem is
apparent in Figure 16 (top). The refinement only
happens in one quadrant of the image. The algo-
rithm gets trapped. This is undesirable. The same
effect is observable in the tricolor image presented in
Figure 16 (bottom). While there is not enough evi-
dence to fully discard the idea, it is an unpromising
path.

Adding training points randomly from the whole
image is more promising. The top image in Figure 13
has been created with only 200 training instances
in the first iteration. After refining, for each newly
added grid point, 60 new training instances have been
added until reaching a final number of 5780 training
points.

4.7 Model Selection Results

This section presents the results of using the balanced
linefit criterion to automatically select the number of
clusters and the kernel parameter.

We set η = 0.75 in Equation 9, as selected by
Alzate and Suykens [4]. First, we let the number
of clusters k run from 3 to 6, and the kernel param-
eter σ run from 0.05 to 1.00 with a step of 0.05. The
other algorithm parameters were kept fixed. Table 5
shows the chosen pair (k, σ) for each of the images.

Figure 17 shows the balanced linefit plotted against
k and σ for all three images in Table 5. It appears
that the balanced linefit prefers very few clusters in
this context. The same parameter values as in Ta-

Figure 16: Segmentation results for the elephant im-
age (top), and the tricolor image (bottom). These
results indicate that adding training points in the
support area of new grid points is counterproductive.

ble 5 would have been selected based on linefit only
(i.e. with η = 1). Figure 18 shows the selected seg-
mentation images.

image k σ lf b blf

shapes 3 0.75 0.89 0.18 0.71

elephant 4 0.15 0.77 0.15 0.61

parade 3 0.05 0.86 0.66 0.81

Table 5: Model selection results: number of clusters
k, kernel parameter σ, linefit lf, balance b, balanced
linefit blf.

4.8 BSDS300 Benchmark

This section analyzes the segmentation results quan-
titatively. The algorithm is evaluated on 20 ran-
domly selected images out of the 100 test images in
the BSDS300 dataset. The parameters σ and k are
chosen by the balanced linefit criterion, with levels
0.10, 0.55, 1.00 for σ and levels 3, 4, 5 for k. The ini-
tial grid level is set to 7. The grid is refined once

14

Figure 17: Plots of the balanced linefit versus the number of clusters and the kernel parameter for the
images shapes, elephant , and parade. The computed values of the balanced linefit are interpolated for better
visualization.

Figure 18: Segmentation results for the images shapes (left), elephant (center), and parade (right). These
results were obtained with the parameters chosen by maximum balanced linefit.

Figure 19: Hand-picked segmentation results for five images from the Berkeley Segmentation Dataset 300.

15

Image ID σ k F (a) F (b)
8023 0.10 4 0.21 0.31

14037 0.55 3 0.46 0.58
33039 0.10 3 0.56 0.48
38092 0.10 3 0.54 0.62
41033 0.10 3 0.51 0.64
76053 0.10 3 0.23 0.59
85048 0.10 3 0.61 0.62
97033 0.55 3 0.54 0.51

101087 0.10 3 0.31 0.60
108082 0.10 3 0.35 0.36
109053 0.10 3 0.31 0.48
134035 0.10 3 0.45 0.48
160068 0.55 3 0.43 0.50
189080 1.00 3 0.64 0.65
208001 0.10 3 0.34 0.60
236037 0.10 3 0.26 0.48
291000 0.10 3 0.42 0.53
296007 0.10 3 0.41 0.66
299086 0.10 4 0.50 0.70
306005 0.55 3 0.45 0.63

Table 6: F-measures (a) for this work, and (b) for the
work by Alzate and Suykens [4].

with r% = 0.03. Table 6 shows the results. Alzate
and Suykens [4] achieve a larger F-measure on most
images.

4.9 Selected Results

In order to show some promising results, we hand-
picked five segmentation images. These are shown in
Figure 19. The selected results show that the algo-
rithm is able to properly segment the five images ele-
phant , bird , pyramids, surfer , and parade. Of course,
part of the success is due to the manual selection of
the best segmentations. However, these results show
what is possible to achieve if the right model is cho-
sen.

4.10 Performance

This section presents the computation times of the
algorithm. The computation times depend heavily
on the chosen parameter values. While some stages
in the algorithm support parallel execution, this eval-
uation is concerned with user time rather than wall

Figure 20: CPU time versus the number of grid points
at three different sizes of the training set.

time. The times are measured on a notebook with an
Intel i5 quad-core processor at 2.67 GHz.

We first examine the impact of segmenting images
at grid levels ranging from 3 to 8. Figure 20 shows
the CPU time versus the number of grid points. The
times for the six different grid levels are linearly inter-
polated for better visualization. Times are reported
for 4000, 8000, and 12000 training instances. The
computation times grow non-linearly with the num-
ber of grid points, which is consistent with the anal-
ysis in Section 3.1.

A second experiment shows the relationship be-
tween the number of training instances and the com-
putation time. We tested configurations with up to
16000 training instances at three different grid lev-
els. Figure 21 shows the results. The graph indicates
that the cost for adding training instances is higher
on a fine grid than on a coarse grid. This is notewor-
thy, but also in line with the theoretical analysis in
Section 3.1.

16

Fig. σ k nα l M nr c r% rmax

12.1 0.30 3 3 3 8000 0 25 - -
12.2 0.30 3 3 4 8000 0 25 - -
12.3 0.30 3 3 5 8000 0 25 - -
12.4 0.30 3 3 6 8000 0 25 - -
12.5 0.30 3 3 7 8000 0 25 - -
12.6 0.30 3 3 8 8000 0 25 - -
12.7 0.30 3 3 3 8000 0 25 - -
12.8 0.30 3 3 4 8000 0 25 - -
12.9 0.30 3 3 5 8000 0 25 - -
12.10 0.30 3 3 6 8000 0 25 - -
12.11 0.30 3 3 7 8000 0 25 - -
12.12 0.30 3 3 8 8000 0 25 - -
12.13 0.30 3 3 3 8000 0 25 - -
12.14 0.30 3 3 4 8000 0 25 - -
12.15 0.30 3 3 5 8000 0 25 - -
12.16 0.30 3 3 6 8000 0 25 - -
12.17 0.30 3 3 7 8000 0 25 - -
12.18 0.30 3 3 8 8000 0 25 - -
13.1 0.45 3 3 2 200 3 60 0.10 ∞
13.2 0.20 3 2 2 200 5 25 0.30 7
14.1 0.50 3 3 4 8000 5 25 0.10 7
14.2 0.50 3 2 4 8000 6 25 0.10 7
14.3 0.50 3 2 4 8000 6 25 0.10 7
15.1 0.30 3 3 6 8000 0 25 - -
15.2 0.30 3 3 7 8000 0 25 - -
15.3 0.50 3 3 4 8000 2 25 0.10 7
15.4 0.30 3 3 6 8000 0 25 - -
15.5 0.30 3 3 7 8000 0 25 - -
15.6 0.50 3 2 4 8000 3 25 0.10 7
15.7 0.30 3 3 6 8000 0 25 - -
15.8 0.30 3 3 7 8000 0 25 - -
15.9 0.50 3 2 4 8000 3 25 0.10 7
16.1 0.45 3 3 2 4000 3 80 0.10 ∞
16.2 0.45 3 3 2 200 3 60 0.10 ∞
18.1 0.05 3 2 7 8000 0 25 - -
18.2 0.05 3 2 7 8000 0 25 - -
18.3 0.05 3 2 7 8000 0 25 - -
19.1 0.45 3 3 3 4000 3 40 0.10 ∞
19.2 0.30 3 3 8 8000 0 25 - -
19.3 0.35 3 3 7 8000 0 25 - -
19.4 0.30 3 3 7 8000 0 25 - -
19.5 0.35 6 5 6 4000 0 25 - -

Table 7: Parameters for all experiments referenced in this report. M is the initial size of the training set.

17

Figure 21: CPU time versus the number of training
instances at three different grid levels.

5 Conclusion

5.1 Contributions

This work consists of several parts. We extended
the hierarchical surplus refinement strategy such that
new training instances can be added in each iteration.
We transferred the balanced linefit criterion to the
algorithm described in this work. We created tools
for visualizing intermediate results and the final seg-
mentation results. We implemented an experiment
runner which is able to store results in a database for
convenient access. We examined the impact of dif-
ferent algorithm parameters, and showed that good
segmentation results can be achieved with few grid
points.

5.2 Results

In this report, we list both insuccessful attempts and
promising results. The non-linear clustering method
from Peherstorfer et al. [2] can be applied to image
segmentation. It is especially promising in combina-

tion with adaptive refinement based on hierarchical
surplus. This refinement strategy tends to increase
the resolution at object boundaries and segmentation
boundaries. Adaptive refinement allows us to obtain
segmentation results of the same quality as with reg-
ular sparse grids, but involves fewer grid points.

The concept of adding training instances in each
iteration is sound, but confining the sampling area to
the support of basis functions is counterproductive.
The resolution of the sparse grid and the local spatial
consistency are tied together. Greater level of detail
can be obtained by increasing the resolution of the
grid.

The balanced linefit criterion seems to prefer few
clusters in the tested images. As a subjective human
observer, the criterion chooses too few clusters, and
it needs to be looked at more closely.

Good segmentation results can be obtained in
around 8 minutes of CPU time. The required com-
putation times depend mainly on the number of iter-
ations, the number of grid points, and the number of
training instances.

5.3 Future Work

Many questions remain open for future work. This
applies to feature extraction, to model selection, to
quantitative evaluation, and to performance.

This work used features exclusively based on local
color histograms. Future work might include other
types of features, such as explicit spatial cues.

An objective, quantitative criterion such as the F-
measure is very helpful for evaluation. While bench-
mark results on the BSDS300 are given in this report,
the quantitative analysis has not been focus of this
work. A well-integrated quantitative criterion would
help in finding an optimal tradeoff between initial
grid level and number of refinement steps in terms of
computation time and segmentation quality.

Model selection has not been the main focus in this
work. Besides of the balanced linefit criterion, other
model selection mechanisms could be tried in future
work. In order to assess the results, a quantitative
criterion for evaluation would be helpful here as well.

The computation times can be reduced through
parallelization. A remaining task is to find out which

18

of the available solvers for the particular eigensystem
in Equation 8 is the fastest in practice.

References

[1] J. Shi and J. Malik,“Normalized Cuts and Image
Segmentation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 22, no. 8,
pp. 888–905, 2000.

[2] B. Peherstorfer, D. Pflüger, and H.-J. Bun-
gartz, “A Sparse-Grid-Based Out-of-Sample Ex-
tension for Dimensionality Reduction and Clus-
tering with Laplacian Eigenmaps,” in AI 2011:
Advances in Artificial Intelligence, vol. 7106 of
Lecture Notes in Computer Science, pp. 112–
121, Springer, 2011.

[3] M. Belkin and P. Niyogi, “Laplacian Eigenmaps
for Dimensionality Reduction and Data Repre-
sentation,” Neural Computation, vol. 15, no. 6,
pp. 1373–1396, 2003.

[4] C. Alzate and J. A. K. Suykens, “Multiway Spec-
tral Clustering with Out-of-Sample Extensions
through Weighted Kernel PCA,” IEEE Transac-
tions on Pattern Analysis and Machine Intelli-
gence, vol. 32, no. 2, pp. 335–47, 2010.

[5] C. Fowlkes, S. Belongie, F. Chung, and J. Malik,
“Spectral Grouping Using the Nystrom Method,”
IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 26, no. 2, pp. 214–225,
2004.

[6] P. Heckbert, “Color Image Quantization for
Frame Buffer Display,” Proceedings of the 9th
Annual Conference on Computer Graphics and
Interactive Techniques, vol. 16, no. 3, pp. 297–
307, 1982.

[7] X. Wu, “Efficient Statistical Computations for
Optimal Color Quantization,” in Graphics Gems
II (J. Arvo, ed.), pp. 126–133, Academic Press,
1991.

[8] D. Martin, C. Fowlkes, D. Tal, and J. Ma-
lik, “A Database of Human Segmented Natural

Images and its Application to Evaluating Seg-
mentation Algorithms and Measuring Ecologi-
cal Statistics,” in Proceedings of the 2001 IEEE
International Conference on Computer Vision,
vol. 2, pp. 416–423, 2001.

[9] U. von Luxburg, “A Tutorial on Spectral Clus-
tering,” Statistics and Computing, vol. 17, no. 4,
pp. 395–416, 2007.

[10] H.-J. Bungartz and M. Griebel, “Sparse grids,”
Acta Numerica, vol. 13, pp. 147–269, 2004.

[11] T. Gerstner and M. Griebel, “Sparse grids (short
introduction),” in Encyclopedia of Quantitative
Finance, John Wiley & Sons, 2008.

19

