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Abstract
Motion segmentation of RGB-D videos can be a first step
towards object reconstruction in dynamic scenes. The ob-
jective in this thesis is to find an efficient motion segmenta-
tion method that can deal with a moving camera. To this
end, we adopt a feature-based approach where keypoints in
the images are tracked over time. The variation in the ob-
served pairwise 3-d distances is used to determine which of
the points move similarly. We then employ spectral cluster-
ing to group trajectories into clusters with similar motion,
thereby obtaining a sparse segmentation of the dynamic ob-
jects in the scene. The results on twenty scenes from real-
world datasets and simulations show that while the method
needs more sophistication to segment all of them, several
dynamic scenes have been successfully segmented at a pro-
cessing speed of multiple frames per second.





Segmentering av rörelse i RGB-D-filmer
genom gruppering av punktbanor

Referat
Segmentering av rörelse kan vara ett första steg mot re-
konstruktion av objekt i dynamiska scener. Målet i den
här rapporten är att hitta en effektiv segmenteringsmetod
som inte bara skiljer åt förem̊al som rör sig i scenen ut-
an ocks̊a hanterar videoinspelningar som görs med rörliga
RGB-D-kameror. Metoden vi väljer följer distinktiva punk-
ter i scenen genom tiden. Sedan beräknas likheten mellan
de sp̊arade punktbanorna genom att analysera parvis av-
st̊and i 3-d. Spectral clustering används för att gruppera
punktbanorna. Vi utvärderar metoden p̊a totalt tjugo oli-
ka inspelningar därav sexton är fr̊an äkta scener och fyra
är fr̊an animerade scener. Utvärderingen visar att metoden
inte är tillräckligt avancerad för att kunna hantera alla sce-
ner. Samtidigt levererar metoden förväntade resultat i flera
scener och behöver en br̊akdel av en sekund för varje bild.





Bewegungssegmentierung von RGB-D-Videos
durch Gruppierung von Trajektorien

Zusammenfassung
Bewegungserkennung kann ein erster Schritt zur Rekon-
struktion von Objekten in dynamischen Szenen sein. Das
Ziel dieser Masterarbeit ist eine effiziente Methode zur Seg-
mentierung von RGB-D-Videos zu finden, welche nicht nur
sich bewegende Objekte separiert, sondern auch mit Vi-
deos zurecht kommt, die von sich bewegenden Kameras
aufgenommen wurden. Zu diesem Zwecke verwenden wir
eine Methode, die markante Punkte durch das Video ver-
folgt. Die Veränderung der Abstände zwischen jeweils zwei
Punkten gibt Aufschluss darüber, welche Punkte sich nicht
auf dem gleichen starren Körper befinden können. Schließ-
lich wird spektrales Clustering angewandt, um die Punkte
hinsichtlich ähnlicher Bewegung zu gruppieren. Die Metho-
de testen wir mit zwanzig sowohl echten als auch animier-
ten dynamischen Szenen. Die Ergebnisse zeigen, dass die
Methode zwar nicht raffiniert genug ist, um mit allen Sze-
nen zurechtzukommen, aber es trotz des einfachen Ansatzes
schafft, die Bewegung in vielen Szenen mit einer Rate von
mehreren Bildern pro Sekunde korrekt zu separieren.
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Chapter 1

Introduction

1.1 Motivation

Imagine that a computer could discover the whereabouts of all moving objects
in all frames of a video with both color and depth information, and describe the
motion of the objects accurately such that it becomes possible to learn the 3-d
appearance of the moving objects. This would enable automatic 3-d reconstruction
of moving objects in a dynamic scene. Researchers around the world are curious on
how to achieve this, and there is an interest in business to make the achievements
available to a wider public. Such an undertaking can benefit from recent advances
in several areas. First, the availability of relatively low-cost depth sensors simplifies
the acquisition of depth measurements. Second, the advances in hardware help
process the data in a timely fashion. Third, open source libraries help researchers
and developers to put theory into practice.

Motion segmentation in dynamic scenes remains a challenging problem despite
of the advances. As compared to static scenes, any change observed in the images
of a dynamic scene is not necessarily caused by camera motion. Human vision is
sophisticated enough to detect small and large, dependent and independent motion
of differently sized objects in the scene even if the human observer is moving on
his or her own. Humans have the advantage that they may rely on a vast semantic
knowledge about the world and can integrate multiple cues for grouping objects
together. In contrast, computer vision is not as far in its ability to separate the
sources of observed motion in such a generic way.

This thesis explores a possible first step towards the long term goal of 3-d re-
construction in dynamic scenes: the segmentation of moving objects. Of particular
interest is whether the depth information provided by RGB-D cameras can be ex-
ploited for motion segmentation. Much research in motion segmentation in the last
decades has focused on segmenting sequences of 2-d images. With depth sensors be-
coming increasingly available, it is natural to ask whether we can take advantage of
the depth images in a RGB-D video for the purpose of motion segmentation. Depth
as an extra dimension adds to the already large amounts of data contained in videos.

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Results of motion segmentation in four dynamic scenes. Moving objects
in the scene are detected. The keypoints are labeled according to which moving
object they belong to.

Care has to be taken in order to make the segmentation method sufficiently fast to
be interesting for real applications.

1.2 Problem statement
A static scene consists of a single rigid body and does not include any kind of
motion. In contrast, a dynamic scene contains some motion. Dynamic scenes can
contain different kinds of motion: rigid, non-rigid, and articulated motion [1]. Under
rigid motion, objects do not change shape. In contrast, objects under non-rigid
motion can deform. Finally, articulated motion is the composition of two dependent
motions [1]. The dynamic scenes can be either observed by a moving camera or a
fixed camera, A fixed camera means in the context of this work that the camera
does not move relative to the room in which the dynamic scenes are set.

In this thesis, we address the motion segmentation problem in dynamic scenes
with rigid motions, observed by a moving camera. Thus, we assume that all motion
in the scene is rigid but explicitly avoid the strong assumption of a fixed camera.
Given a video with color and depth images, the goal is to find a sparse segmentation
of objects that move rigidly at least once in a scene. Figure 1.1 shows examples of
how the results of the desired motion segmentation look like.

1.3 Selected approach
The selected approach builds upon the assumption that all motion in the dynamic
scene is rigid. The method has been inspired by ideas from Brox and Malik [2]. We
adopt an approach based on clustering point trajectories. First, selected keypoints
are tracked in the images of the video with the help of a point tracker based on
optical flow. This results in point trajectories that capture how individual points
move over time. The pairwise Euclidean distances between two points over time
reveal which points cannot lie on the same rigid object. We use this fact to define
pairwise similarity between trajectories based on the difference of the maximum and
the minimum observed distance. The framework is flexible enough to allow other
definitions of similarity. In order to find clusters of points with coherent motion,
the similarity graph is partitioned with spectral clustering.

2



1.4. THESIS OUTLINE

1.4 Thesis outline
In the introduction, we motivated why handling dynamic scenes is beneficial for 3-d
reconstruction and described the problem tackled in this thesis. In Chapter 2, we
review literature related to dynamic scenes, point out the distinguishing features
of our work, refine upon the problem statement given in the introduction, and
describe the assumptions made in our approach in more detail. In Chapter 3, we
present background theory helping the reader to understand the following chapters
about the method and the evaluation. In Chapter 4, we describe the essence of the
method, which is then evaluated in Chapter 5. In Chapter 6, we conclude with the
key findings and suggestions for future work.

3





Chapter 2

Related work

The existing literature on motion segmentation is vast. This is a hint that the
problem is both difficult to solve and that a solution is valuable [1]. Among the
researchers that have reviewed methods on motion segmentation are Megret and
DeMenthon [3], who categorize existing techniques until 2002 in a survey on video
segmentation algorithms. Zappella covers research on motion segmentation until
2008 in his master thesis [4], and reviews trends in a survey [1] in 2009. These sources
provide a framework for comparing the assumptions, strengths, and weaknesses of
motion segmentation methods. This framework is used in the following to review
mostly recent research that is not already covered by these surveys.

2.1 General approaches

The assumptions on the scene and the camera motion control the difficulty of the
problem. These assumptions differ from application to application, and it is vital to
understand the implications. In this thesis, we assume that the motion in the scene
is rigid and that the camera might move. Furthermore, we assume that dynamic
objects can appear, temporarily stop, and disappear from the scene.

In contrast, in surveillance scenarios, one can often assume a fixed camera. In
such a case, the motion segmentation problem turns into the problem of subtraction
of largely static background. For example, Kim et al. [5] describe a system that
learns a model of the background and can then use the model to detect moving
objects.

The idea of building a model of the background can also be found in applications
with moving cameras. Izadi et al. [6] present an extension to the KinectFusion [7]
pipeline. Here, a dense surface of the background is reconstructed from the input
of a RGB-D camera. Once this model is built, dynamic objects can be detected
by determining whether newly arriving data fits to the model of the background
or not. This method is reviewed in more detail later in this chapter. A similar
approach to motion segmentation is taken by Keller et al. [8], who use point clouds
to model both the background and dynamic objects. In order to subtract the

5
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background with moving cameras, Sheik et al. [9] fit a subspace to trajectories
on the background by random sample consensus [10], thereby assuming that the
background is the predominant structure in the scene. In summary, there is a group
of approaches [5, 6, 7, 8, 9] that first construct a model and then identify moving
objects as outliers with respect to that model. Zhou et al. [11] avoid the problem
of the training phase by outlier detection by using a low-rank approximation of the
video frames.

Assuming the background to be predominant in the scene, or assuming the
objects to appear in a certain order might not always be viable. There are motion
segmentation methods that treat all the objects in the scene equally. To these
belong the trajectory grouping methods by Brox and Malik [2], and by Perera and
Barnes [12]. Since the ideas for the method presented in this thesis effectively stem
from these papers, they are discussed in more detail.

Besides the differences in the assumptions made on the input, there are dif-
ferent requirements on the output of motion segmentation. There seems to be an
agreement that motion segmentation is about obtaining a pixel-wise annotation of
the moving objects in each frame. Trajectory-based methods often result only in a
sparse annotation of the moving objects, where the keypoints are labeled with the
object they belong to [12, 13, 14, 15, 16]. There are efforts to obtain dense seg-
mentations by increasing the density of the tracked points [2, 17, 18]. If this is not
enough, “densification” [3] can be done as a post-processing step [19]. In contrast,
statistical approaches can lead directly to a dense segmentation [1, 20].

So far, different assumptions on the input and requirements on the output of
motion segmentation have been treated. Both the assumptions and the requirements
are determined by the intended application of the motion segmentation algorithm.
When these are clear, it is time to have a closer look on how motion can be segmented
in various settings. For this purpose, Megret and DeMenthon [3] provide a way
to categorize the existing approaches. Particularly helpful appears the division of
methods into three bins: (1) methods that focus on segmenting single frames first
and care about time later, (2) methods that explore time first and obtain a spatial
segmentation later, and (3) methods that jointly estimate the motion in both time
and space.

Spatial priority

Focusing on the frame-wise motion first is a natural extension to image segmenta-
tion. Given two successive frames in a video, the question becomes on how to find
regions of coherent motion between these frames. For the robotic application of
singulating objects in cluttered scenes [21], this is already sufficient for segmenting
objects based on motion cues [22, 23], especially if the robot is allowed to interact
with the scene [24, 25, 26]. Commonly, such approaches use or relate to optical
flow [27], scene flow [23, 28, 29], or employ feature matching [26, 30] in order to
detect the changes between pairs of images. However, these approaches offer no
natural way to maintain a temporally consistent segmentation.

6
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Temporal priority

An alternative is to follow points over time first, and decide how to cluster the points
into groups with coherent motion in a later stage. This is the trajectory grouping
category of methods [3]. Here, trajectories describe local motion over a long period.
The trajectories can be found with optical flow [17, 18, 31, 32] or by matching
feature descriptors [33, 34, 35, 36]. The long-term observations seem to provide a
natural way to build temporal consistency into the method right from the beginning.
The disadvantage is that drift in the tracker can cause these trajectories to cross
motion boundaries, meaning that they are susceptible to become corrupted over
time [37]. We have adopted the trajectory grouping approach in this work, building
in particular on the ideas of Brox and Malik [2], who use spectral clustering to
group trajectories based on pairwise similarities. Prior to their work, many other
methods have been developed on the idea of trajectory grouping. Assuming an affine
camera, the trajectories of points belonging to the same rigid motion lie in a linear
subspace [38] such that finding these subspaces solves the motion segmentation
problem. The local subspace algorithm of Yan and Pollefeys [13] is a particular
method that is treated in more detail in this chapter. The benchmark by Tron
and Vidal [39] summarizes a few of these methods, and Zappella [1, 4, 40] covers
them well. These methods are mathematically elegant but have the weakness that
they usually require complete trajectories. With both moving objects and a moving
camera, this requirement limits the use cases considerably. However, there are
efforts to overcome the problem of incomplete trajectories [15, 41].

Joint segmentation

Finally, there is the category of methods that segment motion jointly in space and
time. Statistical methods seem to be suitable, as they allow to combine the un-
knowns with the prior knowledge about spatial and temporal constraints in a single
framework. Cremers and Soatto [20] formulate motion segmentation as a problem
of Bayesian inference, which is solved with variational methods. They represent the
motion boundaries either with splines or level sets. A recent method by Schoene-
mann and Cremers [42] segments motion into layers such that a cost for encoding
the video is minimized.

2.2 Exemplary approaches

2.2.1 Clustering of long-term trajectories

Brox and Malik [2] cluster long-term point trajectories in 2-d videos. Their basic
idea is to detect motion between pairs of points over time, arrange the collected
evidence in a similarity graph, and then use spectral clustering to partition the
similarity graph into clusters of similarly moving points. Their work is relevant for
this thesis, as the approach allows for a moving camera, handles missing data, aims

7
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for temporally consistent segmentations, and has reasonable complexity with regard
to the implementation.

The authors do not assume a static camera. However, they assume that the
objects are moving mostly translational with respect to the camera. The assumption
is necessary because motion on the image plane is ambiguous. Follow-up work by
Ochs and Brox [43] addresses this issue by considering triplets instead of pairs,
though at the expense of increased computational costs [44]. This gives rise to the
question whether it is possible to extend the approach to 3-d trajectories to get rid
of this ambiguity. This thesis differs from their work mostly through the use of 3-d
data and a different definition of similarity.

The graph-partitioning approach to clustering handles incomplete trajectories
naturally. Non-overlapping trajectories can still be related to each other via transi-
tive links in the similarity graph. Brox and Malik [2] do not report how much missing
data can be handled. This is an important question as it influences the choice of
the keypoint tracker. They use the large displacement optical flow tracker on the
GPU by Sundaram et al. [17], which has been reported to improve in accuracy and
quantity over a GPU-based version of the Kanade-Lucas-Tomasi tracker [45]. Yet,
the choice of a more advanced point tracker comes at the expense of computational
costs. Sundaram et al. [17] report a runtime of 3-4 seconds per frame in 2010. For
the longest of the videos used in this thesis, extrapolation shows that tracking alone
would accumulate to an hour on the same machine and the same image resolution
at 640×480 pixels. Likely due to better hardware, Ochs et al. [44] report a runtime
of less than two seconds in 2013. Despite of the advances in hardware, a fast, serial
point tracker based on the OpenCV library [46] is used in this work instead because
it runs at about half real-time frame rate on our machine.

The trajectories provide temporal links between the video frames. Brox and Ma-
lik [2] claim that the ability to obtain “temporally consistent segmentations” is one
of the main benefits of the approach. With regard to the survey of Megret and De-
Menthon [3], their method falls into the category of trajectory grouping approaches
that gather information in time first, and segment in space later. Analyzing along
the temporal dimension first before taking further steps makes the method offline,
as it needs to see all video frames. Brox and Malik [2] motivate their work by ar-
guing that the long-term trajectories reveal more about the moving objects in the
scene than the flow between two scenes. The same position is taken in this thesis.

The way we define similarity between trajectories differs from the work by Brox
and Malik [2]. They concentrate on identifying the instant where the motion be-
tween points seen on the image plane is maximum. We experiment with both the
maximum overall difference in point distance, and alternatively the variance as a
measure for dissimilarity, formulated in a generic framework where alternative defi-
nitions can be plugged in. Which method works best in which scenarios has to the
best of our knowledge not been treated in depth yet and remains an open question.

Follow-up work by Ochs et al. [19, 44] explores the method further. It includes
a densification step [3] for obtaining pixel-wise motion segmentation rather than
the sparse segmentation obtained by labeling the trajectories. The densification
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step is particularly interesting for possible 3-d object reconstruction after motion
segmentation because it identifies the regions in the image and in the depth data
that shall be included in the 3-d model and its texture. Fragkiadaki et al. [47] treat
the discontinuities between clusters explicitly and obtain a dense segmentation from
the trajectory clusters via Gabriel graphs [48].

2.2.2 Clustering trajectories with maximal cliques

Perera and Barnes [12] build upon the fact that none of the distances between points
on a rigid object can ever change. They group trajectories by finding maximal
cliques in a thresholded similarity graph constructed from the sample standard
deviation between pairs of points.

The maximal cliques correspond to groups of points that are compatible with
a rigid motion hypothesis. They solve the maximum coverage problem in order to
determine the final segmentation from the, not necessarily disjoint, maximal cliques.
The problems of enumerating all maximal cliques in a graph, and the maximum
coverage problem are NP-hard [49, 50].

In contrast to many existing motion segmentation algorithms, Perera and Barnes
[12] use RGB-D videos as input data. They evaluate their method on synthetic
data and real datasets. However, the latter consists only of image sequences with
a handful of images with less than 150 keypoints. The RGB-D videos targeted in
this thesis contain fifty or more frames, and the quantity of keypoints needs to be
larger. While theoretically elegant, it is therefore not clear to see how this method
scales to the problem treated in this thesis.

Perera and Barnes [12] also suggest to use the sample standard deviation in
order to summarize changes of distances between pairs of 3-d points. These aspects
make their research relevant for this thesis, claiming that 3-d data can be used for
motion segmentation. We generally follow their notation where possible.

There are many parallels between the maximal clique based approach in [12]
and the spectral clustering approach in [2]. Both construct a similarity graph. The
maximal clique based approach requires an early decision about which edges in the
graph link points on the same rigid object. Hence, noise is addressed early in the
algorithm while the uncertain information is kept in spectral clustering almost until
the end. The approach taken in this thesis can be seen as a fusion of the ideas in [2]
and [12]. The construction of the similarity graph from 3-d trajectories follows [12]
in certain aspects, whereas the grouping step is performed via spectral clustering in
a similar way as done in [2].

2.2.3 Clustering trajectories by local subspace affinity

The local subspace affinity (LSA) method by Yan and Pollefeys [13] exploits the fact
that trajectories of points on a rigidly moving object lie in an up to four-dimensional
linear subspace under affine projection [38]. The trajectories are then grouped by
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estimating the subspace for each trajectory locally. Spectral clustering partitions the
similarity graph based on the principal angles between a pair of estimated subspaces.

LSA belongs to a class of methods that make use of the measurement matrix
W ∈ R2F×N (see [15, 38]). This matrix consists of the stacked 2-d coordinates u, v
of all N points in all F frames.

W =


u11 u12 · · · u1N

v11 v12 · · · v1N
...

...
...

...
uF 1 uF 2 · · · uF N

vF 1 vF 2 · · · vF N

 ∈ R2F×N (2.1)

This matrix is formed by projections of the 3-d trajectories with an affine camera.
The idea now is to find trajectories that lie in the same subspace. To this end, LSA
estimates the matrix rank K and projects each of the N columns onto the K-
dimensional unit hypersphere with the help of singular value decomposition. The
linear subspace for each trajectory is estimated from the local neighborhood on the
sphere. Finally, Yan and Pollefeys [13] use principal angles between the estimated
linear subspaces for defining similarity between the subspaces. The similarity graph
is partitioned via spectral clustering.

While mathematically elegant, the downside of LSA is that it does not provide a
built-in mechanism to treat incomplete trajectories. This is a too strong limitation
given the RGB-D videos considered in this thesis. Also, estimating the rank of ma-
trix K and the dimensions of the linear subspaces has been reported as difficult [39].
Local subspace affinity is studied in more detail in the master thesis by Zappella [4],
which provides good references to related work on the subject.

2.2.4 Outlier-based segmentation with KinectFusion

So far, we have presented approaches that work on sparse to semi-dense trajectories.
KinectFusion by Newcombe et al. [7] is a depth-based real-time approach to the
simultaneous localization and mapping (SLAM) problem. Depth readings from a
depth sensor are integrated frame by frame into a global model of the surface.

Izadi et al. [6] extend the system to deal with dynamic scenes in order to support
interaction. This involves a user interacting with objects in front of the camera.
They also state the 3-d reconstruction of a single object as the goal, motion being
the cue for segmentation. Hence, their work is relevant to this thesis.

The extension to KinectFusion is based on the assumptions that the background
is the dominant structure in the scene, and that parts of the background have already
been integrated into the surface model prior to interaction. The idea behind these
assumptions is that the camera motion can still be recovered from the dominant
background and that dynamic objects reveal themselves as outlier data when fitted
to the global model of the surface. In the interactive scenario, users might not
only interact with the scene but the system might interact with the user. This
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allows for giving the user feedback and instructions on how to make sure that these
assumptions hold. These assumptions are not made in this thesis, giving all rigid
structures equal treatment and imposing no specific order in which the objects have
to appear in RGB-D videos.

2.2.5 Object-centered reconstruction

Shin et al. [51] introduce a bottom-up approach targeted solely at reconstructing
moving objects in a dynamic scene. Their idea is based on co-recognizing objects
that are common in a set of unordered images by matching image patches between
each image pair. The correspondences are then used to obtain a dense segmentation
of the objects in the images prior to 3-d reconstruction of the method.

Unfortunately, the method scales quadratically with the number of frames. The
reported running times of the reference implementation are too long with respect
to the practical orientation of this thesis.

2.3 Benchmarks

The field of RGB-D video segmentation is relatively new and seems to lack standard,
large-scale benchmark datasets. No suitable public benchmark could be found that
provides RGB-D videos with ground truth segmentation of each moving object in a
dynamic scene. In the following, three publicly available benchmarks are presented,
but none of them is really suitable for this thesis.

2.3.1 TUM RGB-D Benchmark

The TUM RGB-D Benchmark dataset [52, 53, 54] is a collection of static and dy-
namic scenes recorded with RGB-D cameras. The benchmark is intended for the
evaluation of SLAM systems. Each recording provides color and depth images. The
datasets are annotated with the ground truth camera path relative to the back-
ground in the scene. The dynamic scenes contain motion such as people moving.
The benchmark targets researchers who want to test the camera tracking and map-
ping capabilities of a SLAM system. There is no pixel-wise annotation of the moving
objects in the image sequences, which limits the usefulness of the dataset in the con-
text of motion segmentation, at least as long as the motion segmentation algorithm
is not embedded into a system for robust camera tracking.

2.3.2 Hopkins 155 Dataset

The Hopkins 155 Dataset [39] provides 155 videos together with point trajectories.
Most of scenes consist of rigidly moving checkerboard objects, recorded with hand-
held cameras. There are also scenes with non-rigid motion and articulated motion.
The trajectories are labeled with ground truth according to which dynamic object
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they belong to. However, the Hopkins 155 Dataset does not contain outlier or in-
complete trajectories, has less than 500 trajectories per image sequence, and does
not provide any depth data as input, which makes it unsuitable for the evaluation
of RGB-D video segmentation methods. An update to the dataset adds the capa-
bility to insert synthetic outliers into the dataset, and provides 16 sequences with
incomplete trajectories and outliers from [15, 55].

2.3.3 Freiburg-Berkeley Motion Segmentation Dataset
The Freiburg-Berkeley Motion Segmentation Dataset [2, 44] contains 59 videos with
pixel-wise ground truth. It features mostly non-rigid motion but includes some of
the car sequences from the Hopkins 155 Dataset. As with the Hopkins 155 Dataset,
no depth data is included. It is thus also not suitable for the evaluation in this
thesis.
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Chapter 3

Background

In this chapter, we present concepts that the method builds upon. Readers familiar
with the topics discussed in this section may skip to the next chapter. In Sec-
tion 3.1, we list the depth sensors used in this work for recording RGB-D videos,
and continue to the tracking of keypoints in Section 3.2. In Section 3.3, we provide
the basic terminology and notation of graph theory for convenience before giving
an introduction to spectral clustering in Section 3.4.

3.1 RGB-D cameras

The RGB-D sensors used in this work are the Kinect for Windows (Table 3.1, [56])
and the Asus Xtion Pro Live (Table 3.2, [57]). Both cameras are based on the same
sensor technology and provide registered depth and color images. They are active
sensors based on structured light. This means that they project a near-infrared
pattern onto the surface and reconstruct depth from the observations of an infrared
sensor. While the cameras are relatively cheap, they also produce a considerable
amount of noise. A particular property of the cameras is that the noise in the depth
measurements increases quadratically with the depth [58].

Range 0.8 m - 4 m (default) or 0.4 m - 3 m (near)
Field of view 57◦ horizontal, 43◦ vertical

Table 3.1: Specifications of the Kinect for Windows RGB-D camera.

Range 0.8 m - 3.5 m
Field of view 58◦ horizontal, 45◦ vertical

Table 3.2: Specifications of the Asus Xtion Pro Live RGB-D camera.
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3.2 Point trackers

Point trackers follow scene points over time. They essentially solve a correspondence
problem: the task of a point tracker is to identify the coordinates of a point in each
camera image. The output of a point tracker is a trajectory for each point. The
trajectory describes the coordinates of the point in the frames of the video.

One class of approaches to point tracking is based on optical flow. The optical
flow describes the displacements of points between successive images. These meth-
ods assume that the scene motion between the two images is somewhat limited, such
that corresponding points can be found close to each other in successive images. An
example for such a flow-based point tracker is the pyramidal implementation [32]
of the Lucas-Kanade method [31] available in OpenCV [46, 59]. The pyramidal
implementation allows the tracker to deal with larger displacements than it is pos-
sible with the fixed window in the plain Lucas-Kanade method. Recent approaches
estimate large-displacement optical flow using variational methods [18, 60], which
can be used to compute point trajectories with the help of parallelization on the
GPU [17].

An alternative approach is to extract keypoints from two images, describe the
keypoints based on their local appearance, and use nearest neighbor search to match
the keypoints. Research on keypoint extraction and keypoint descriptors is vast, for
a survey see [36]. Most well-known are probably the SIFT [33] features and their
application to panorama stitching [61], where images with potentially large displace-
ments need to be registered. Not all image registration techniques are applicable
in motion segmentation, though. If the registration method assumes a static scene,
it can exploit the constraints of multiple view geometry [62]. In dynamic scenes,
methods can only assume locally coherent motion.

3.3 Graph theory

Graphs are commonly used in this thesis both in the theoretical discussion as well
as in the implementation. There is plenty of introductory and advanced literature
about graphs in computer science and mathematics, see [49, 63, 64]. This section
lists the definitions used in this work for convenience. All discussed graphs are
undirected, and either weighted or unweighted.

A simple undirected graph G = (V, E) consists of a set of vertices V and a set
of undirected edges E . Two vertices i, j ∈ V are adjacent if and only if they are
connected by edge {i, j} ∈ E . An edge {i, j} ∈ E is called incident with the vertices
i, j ∈ V. The graph contains no loops, i.e. {i, i} 6∈ E . The graph can be represented
by a symmetric adjacency matrix E ∈ {0, 1}|V|×|V| whose elements eij = eji indicate
whether the vertices i, j are adjacent.

A weighted undirected graph assigns a weight wij ∈ R to each edge. Two vertices
i, j ∈ V in a weighted undirected graph are called adjacent if and only if the weight
wij is non-zero. The weighted undirected graph can be represented by a symmetric
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adjacency matrix W ∈ R|V|×|V| with elements wij = wji. The degree di of a vertex
i ∈ V is computed by the summing the weights of all incident edges.

di =
|V|∑
j=1

wij (3.1)

The volume [65] of a set of vertices A ⊆ V is the sum over all vertex degrees.

vol(A) =
∑
i∈A

di (3.2)

The cut describes the sum of weights of all edges connecting disjoint vertex
sets A,B ⊆ V, and is a measure of how strongly subgraphs are connected.

cut(A,B) =
∑

i∈A,j∈B
sij (3.3)

3.4 Spectral clustering
Spectral clustering comprises a class of methods that use the eigenvectors of a
modified similarity matrix for clustering. We will approach these methods from
the perspective of partitioning similarity graphs. Spectral clustering cuts a graph
by embedding data points in a low-dimensional space where clusters can be found
with a simpler clustering method such as k-means. As such, the term “spectral
clustering” is slightly misleading because it does not assign labels without the help
of a clustering algorithm. Rather, spectral clustering generates features that serve
as input for a clustering algorithm.

Spectral clustering methods have been treated extensively in literature. The
interested reader is referred to the survey by Luxburg [65] for a more comprehensive
tutorial on various spectral clustering techniques. Other standard references are the
articles by Shi and Malik [66] and Ng et al. [67]. Spectral graph theory is treated by
Chung [68]. Spectral clustering is explained in context with other clustering methods
in the survey by Filippone et al. [69]. There is a relation to weighted kernel PCA
by Alzate and Suykens [70]. In general, spectral clustering can be interpreted and
derived in different ways. The remainder of this section concentrates on a particular
variant called normalized spectral clustering, and highlights the aspects that make
spectral clustering attractive for our problem.

The key idea is to translate the clustering problem into a graph problem. Let
us assume that we have a dataset with N data points. How these data points look
like and how they are described is irrelevant. In order to be able to use spectral
clustering, we only need a similarity measure that assigns a non-negative similarity
to each pair of data points. This makes it possible to define a similarity graph, in
which vertices represent data points and each edge is weighted by the similarity
between the incident vertices. The similarity graph is represented by its weighted
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adjacency matrix S ∈ RN×N with entries sij ≥ 0, which we call similarity matrix
whenever convenient.

The clustering problem can now be formulated as the problem of partitioning
the similarity graph. Let us consider the case of two clusters first. In line with the
usual clustering objectives, the goal is to divide the graph such that the vertices
within the same cluster are connected by edges with large weights (high intra-cluster
similarity), and such that the weights of the edges in the cut are small (low inter-
cluster similarity). Additionally, we would like to balance the number of data points
in each cluster in order to avoid clusters consisting of single outliers in the data. The
normalized cut [71] is desirable because it optimizes both for a low value of the cut
and balanced clusters. For a partition {A,B} of the vertex set V, the normalized
cut is defined as

Ncut(A,B) = cut(A,B)
( 1

vol(A) + 1
vol(B)

)
(3.4)

In order to achieve a low value for Ncut(A,B), the term cut(A,B), which cap-
tures the notion of inter-cluster similarity, needs to be minimized, and the terms
vol(A), vol(B) need to be maximized at the same time. Unfortunately, finding the
normalized cut is NP-complete [71]. A brute-force solution is infeasible given that

there are
{

N
2

}
=
∑N−1

n=1
(N

n

)
= 2N−1 − 1 possibilities to partition a set into two

subsets [72]. For problem instances with N > 2000 as encountered in this thesis,
there is a more than 600-digit number of possibilities to choose from. Fortunately,
by relaxing the problem into the real domain it turns out that the normalized cut
can be approximated in polynomial time by finding the eigenvectors of a modified
similarity matrix.

The first step is to form the unnormalized graph Laplacian L ∈ RN×N (see [65])

L = D− S (3.5)

where D ∈ RN×N is the degree matrix of the similarity graph containing the
vertex degrees in the diagonal, i.e.

Dij =
{∑N

k=1 sik if i = j

0, otherwise
. (3.6)

The next step in approximating the normalized cut is to solve the generalized
eigenproblem

Lf = λDf . (3.7)

Let λ1, λ2, . . . , λN denote the eigenvalues with λ1 ≤ λ2 ≤ ... ≤ λN and let
f1, f2, . . . , fN ∈ RN denote the corresponding eigenvectors. None of the eigenval-
ues is negative. The smallest eigenvalue λ1 is always zero and the corresponding
eigenvector f1 is the vector of ones. Hence, the first eigenpair is of no interest. The
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Figure 3.1: A toy similarity graph.

second eigenvector however reveals important information about the cluster struc-
ture in the data, playing the role of a real-valued cluster indicator. This vector can
be turned into a hard labeling by using k-means which boils down to thresholding.
Equation 3.8 shows the graph Laplacian for the toy graph in Figure 3.1 and the
second generalized eigenvector (example taken from [73]).

Ltoy =


1.41 −0.51 −0.14 −0.67 −0.10
−0.51 1.00 −0.23 −0.19 −0.07
−0.14 −0.23 1.29 −0.20 −0.73
−0.67 −0.19 −0.20 1.34 −0.28
−0.10 −0.07 −0.73 −0.28 1.18

 , f toy,2 ≈


0.44
0.41
−0.50

0.23
−0.58

 (3.8)

Moving on to the general case of k clusters, there are several propositions on
how to do so-called multiway spectral clustering. One of them is to take k − 1
eigenvectors, and stack them horizontally in a matrix F = [f2 f3 · · · fk]. The i-
th row in this matrix serves as a feature vector for the i-th data point and the
matrix can be passed to k-means for label assignment. This works because the
eigenvectors beyond the second eigenvector contain relevant information about the
cluster structure in the data. It is illustrative to rewrite Equation 3.7 compactly
with the eigenvalues arranged in a diagonal matrix Λ = diag(λ2, λ3, . . . , λk) as

LF = DFΛ . (3.9)

Eigenvectors are defined only up to scale. This can be neglected in the case
of two clusters. In the multiway case, each column of of matrix F can be rescaled
independently with Equation 3.9 still being satisfied. However, any k-means algo-
rithm based on Euclidean distance will be affected by the scale of the eigenvectors
as these contain the values along one dimension. Thus, scale matters in the case of
multiple clusters.

Spectral clustering as such is a general clustering technique that has been applied
to various problems in different fields. While implementing a basic version of spec-
tral clustering with k-means can be done in a few lines of Matlab code (Listing 1),
there are more questions to be solved in a practical implementation.
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1 function labels = spectral_clustering_with_kmeans(S, num_clusters)

2 D = diag(sum(S, 2));

3 L = D - S;

4 [F, ~] = eig(L, D);

5 labels = kmeans(F(:, 2:(num_clusters+1)), num_clusters);

6 end

Listing 1: A basic implementation of spectral clustering with k-means in Matlab.
Yet, the simplicity of the code is deceiving. It is non-trivial to set up the similarity
matrix S. The number of clusters should also be determined in the procedure rather
than specified by the user.
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Chapter 4

Method

In this chapter, we describe the implemented motion segmentation system. The
goal of the system is to segment the moving objects in each frame of a 3-d video. A
conceptual overview of the method is given in Section 4.1. The method consists of
roughly three consecutive steps (Figure 4.1). First, points are tracked in the color
images in order to follow points in the scene through time and space (Section 4.2).
The trajectories are compared pairwise in order to determine which trajectories
move similarly and are thus likely to belong to the same rigid object (Section 4.3).
This analysis results in a similarity graph which is then partitioned into several
components that correspond to the moving objects (Section 4.4).

4.1 Concept

The proposed method relies at its core on the fact that two scene points that move
closer to each other or away from each other cannot lie on the same rigid object.
Hence, observing the distance between two points gives a clue about which points
must lie on different rigid objects. The key idea is to group the points based on
the observation of pairwise distances over time. In practice, there are two major
difficulties that need to be tackled: noise and missing data. Noise in the observations
might suggest motion when there is none. Partial observations might lead to motion
going undetected.

4.1.1 Trajectories

Points can be tracked in order to observe how the distance between them changes
over time. Point tracking results in trajectories describing the motion of the points
through the scene. In the ideal case, the trajectories span all the frames in the
video. However, in many scenes observed by a single camera, the trajectories can
be incomplete [2, 15] and span only a certain part of the video. This is problematic
because we can only measure distances between two points if the trajectories overlap
in time. Moreover, only trajectories that overlap in at least two frames are of
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Figure 4.1: Overview of the motion segmentation algorithm. The color and depth
images from a RGB-D video are the input data (1). Points are tracked on the color
images in order to obtain trajectories. The observation graph indicates for each
pair of trajectories whether the trajectories overlap in time (2). We assign high
dissimilarity to trajectory pairs if the distances between the tracked points were
observed to change. A kernel turns the dissimilarity graph into a similarity graph
(3). We use spectral clustering to partition the similarity graph. The eigenvectors
of a modified similarity matrix form features. k-means obtains labels from these
features, providing the final motion segmentation (4).

interest because we want to track change in the distance. This can be formalized
in an observation graph where vertices represent trajectories and two vertices are
adjacent if and only if the trajectories overlap in at least two frames.

4.1.2 Scenarios without noise and full observation

If all trajectories are complete, then the observation graph is complete. The converse
does not hold. Let us assume for now that the distances of all tracked points can
be observed at all times, and that the observations are noiseless. It is illustrative
to see how the motion segmentation problem can be solved in such a simplified
scenario. Let us start by defining another undirected graph on the trajectories, the
rigidity graph. In the rigidity graph, two vertices are adjacent if and only if the
observed distance between the points remains constant. Note that, as illustrated
by Figure 4.2, constant distance does not necessarily imply that the two points are
on the same rigid object. Constant distance just means that there exists a rigid
motion that explains the motion of both points.

In order to find groups of points that follow the same rigid motion, we can search
for maximal cliques in the graph [12]. The maximal cliques are not necessarily
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Figure 4.2: Different types of motion of two rigid objects.

Figure 4.3: The rigidity graph for an articulated object has intersecting maximal
cliques. In the depicted case, the intersection is formed by points 3 and 4 on the
axis.

disjoint, not even in the ideal noiseless case with complete trajectories. An example
for this is given in Figure 4.3. Six keypoints are selected on a book: four on the
corners of the book, and two on the axis where the book can be folded together. The
two diagrams in Figure 4.3 (right) show the two maximal cliques contained in the
rigidity graph of a scene where the book has been folded at least once. This means
that finding the maximal cliques alone is not sufficient to partition the trajectories
into groups undergoing the same rigid motion, even when there is no noise.

4.1.3 Scenarios with noise and partial observation

In reality, we have to deal with noisy scenarios and incomplete trajectories. Perera
and Barnes [12] treat noise in their maximal clique based approach to motion seg-
mentation. They construct the rigidity graph by only including edges if the standard
deviation of the pairwise distances remains below a certain threshold. We avoid the
thresholding and choose a method that does not force us to threshold statistics on
the pairwise distances before partitioning the trajectories.

Rather, we keep noisy information under the assumption that the signal might
still be strong enough to be valuable for clustering the trajectories. This is one
of the reasons why we choose to partition a similarity graph, such as it is done
by Brox and Malik [2]. Again, vertices represent trajectories but in contrast to
the observation graph and the rigidity graph defined earlier, the similarity graph
is an undirected weighted graph. Edges with large weights denote that two points
are moving similarly. Then subgraphs with large weight correspond to groups of
trajectories that move similarly. This is illustrated in Figure 4.4. We use spectral
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Figure 4.4: Partitioning the similarity graph yields clusters of points that move
similarly. Bold edges denote strong similarity. The connected similarity graph is
partitioned into two clusters by finding a cut that ideally leads to clusters with high
intra-cluster similarity, low inter-cluster similarity, and clusters of somewhat similar
size.

clustering (see Section 3.4) in order to find these groups.

4.1.4 Towards pose estimation

Keypoints on the same rigid object can be used to estimate its 6 d.o.f. motion
separately of the other objects in the scene. The clustering of points is not an
end by itself. Rather, the segmentation should enable us to use the multiple view
constraints for estimating the motion of single rigid objects. The remaining part of
this chapter describes the pipeline which takes a RGB-D video as input and produces
a sparse segmentation of the dynamic objects as output. The pose estimation itself
has not been tackled and remains future work.

4.2 Point tracking

Point tracking is the first step in the pipeline. As stated in the concept (Section 4.1),
the idea is to track points, construct a similarity graph for the trajectories, and
segment the trajectories. The tracking of points constitutes an important step
because all further tasks depend on the trajectories. The point tracker has kindly
been provided by Volumental for this purpose. The implementation of the point
tracker is therefore not part of this thesis.

The tracker builds upon the Lucas-Kanade optical flow implemented in the
OpenCV framework [32, 46, 59]. It is relatively fast and is able to produce enough
keypoints to cover larger parts of the scene. This is important compared to visual
SLAM algorithms for static scenes that only need enough keypoints to recover the
camera motion.

The result of the point tracking is a set of trajectories {xi}Ni=1 where each tra-
jectory is a sequence of image coordinates.

xi = (xai
i ,x

ai+1
i , . . . ,xa+li−1

i ) (4.1)
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The first frame of trajectory xi is denoted by ai and the length of the trajectory
by li. The point tracker used in this thesis creates trajectories describing a point
in li successive frames, as indicated by Equation 4.1. This simplifies reasoning, but
is not necessarily true for other point trackers, and not a necessary prerequisite
for the method either. Assuming that the color images and the depth images are
registered, we can obtain the trajectory Xi = (Xai

i ,X
ai+1
i , . . . ,Xai+li−1

i ) in camera
coordinates.

4.3 Trajectory statistics
The next step is to define pairwise dissimilarity between trajectories. This is a
prerequisite for constructing the similarity graph as described later in Section 4.4.1.
Intuitively, the more change observed in the distance between a pair of points, the
higher dissimilarity should be assigned to them. We formalize this intuition in the
following.

4.3.1 Statistics of scene distances

Let ρt
ij denote the scene distance between two points with 3-d coordinates Xt

i and
Xt

j in frame t, following the notation in [12].

ρt
ij =

∣∣∣∣∣∣Xt
i −Xt

j

∣∣∣∣∣∣
2

(4.2)

By measuring the scene distance between two points at all observable times
t1, t2, . . . , tn ∈ Tij , we obtain a time series (ρt1

ij , ρ
t2
ij , . . . , ρ

tn
ij ). Defining dissimilarity

can be seen as finding an appropriate statistic for this time series. At this time,
it would be a good idea to assume a certain statistical model for the time series.
Instead, let us just assume that the distances ρt

ij are independent and identically
distributed. Then, we can say that all distances in the time series are distributed
like the random variable ρij .

The idea is to use statistics of the variable ρij that summarize variability in the
series of distance measurements. There are many statistics available for measuring
statistical dispersion. Any of them might be considered for computing dissimilarity.
In this work, we are exploring the range and the variance.

The range of the sample is the difference between the largest and the smallest
value in the sample1. If the range is large, then the points were once observed to be
close together at one point of time, and far away of each other at another point of
time. This should be a strong indicator that they cannot belong to the same rigid
body. Intuitively, the range “memorizes” the largest motion seen. Conversely, if two
points never move, and there is little noise in the measurements, then the range is
close to zero. However, it is possible that a single outlier dominates the range. The
sample range is computed by

1For an alternate definition in statistics for the range, see Evans et al. [74].
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r̂
(
ρij

)
= max

t
ρt

ij −min
t
ρt

ij (4.3)

Alternatively, the variance can serve as a measure of dissimilarity between tra-
jectories. The variance is more robust towards outliers than the range but it be-
comes smaller if two points remain static for a long time after having moved once.
Therefore, the variance assigns higher dissimilarity to points that move constantly
throughout the observed period. The (uncorrected) sample variance of the distances
between two points is

v̂ar
(
ρij

)
= 1
|Tij |

∑
t

(
ρt

ij − µ̂
(
ρij

))2
. (4.4)

Perera and Barnes [12] use the sample standard deviation instead. The use of
statistical tools shall not hide the fact that these measures are defined in a pragmatic
rather than principled manner. However, the use of statistical terms is beneficial
for generating ideas, predicting the effects of measures, and the analysis in the
evaluation.

4.3.2 Statistics of image distances

Similar to the definitions of dissimilarity based on scene distance, we can make
use of distances in the image plane. This is particularly useful if depth data is not
available. It might also be useful if depth data turns out to be unreliable. Working in
the image plane comes at a cost though, since the distance between the projections
xt

i and xt
j depends on the camera pose (Figure 4.5). Let dt

ij denote the Euclidean
distance between the projections xt

i and xt
j of two scene points on the image plane.

dt
ij =

∣∣∣∣∣∣xt
i − xt

j

∣∣∣∣∣∣
2

(4.5)

Changes in the distance of the projections do not necessarily imply that the
distance between the scene points has changed. Conversely, if the distance of the
projections remains constant, then the scene points have not necessarily remained
static. These ambiguities cannot occur when observing the scene distance directly.
This was one of the motivations behind this work.

Just as with the scene distances, we use the sample range and the sample variance
as two more candidates for defining dissimilarity.

r̂
(
dij

)
= max

t
dt

ij −min
t
dt

ij (4.6)

v̂ar
(
dij

)
= 1
|Tij |

∑
t∈Tij

(
dt

ij − µ̂
(
dij

))2
(4.7)

Brox and Malik [2] define dissimilarity in the image differently, taking global
considerations such as the magnitude of the motion at a particular time into account.
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(a) The projections of two points depend
on angle and distance of the camera.

(b) Points on optical rays project to the
same location on the image plane.

Figure 4.5: Relations between distances of scene points and their projections.

4.3.3 Computational complexity

Given N complete trajectories in T frames, a straightforward algorithm for com-
puting any of the statistics in Equations 4.3, 4.4, 4.6, and 4.7 walks over all

(N
2
)

pairs of trajectories and computes the statistic for each pair. Computing the range
or variance for a pair of trajectories is linear in the length of the trajectories, e.g.
has computational complexity O(T ). Thus, the total costs for computing dissimi-
larity between all trajectories are in O(TN2). For example, computing the sample
range in a video with T = 50 frames and N = 1000 complete trajectories leads to
50 ·

(1000
2
)
≈ 25 · 106 computations of Euclidean distance.

4.4 Trajectory clustering

Trajectory clustering aims at finding clusters of points with coherent motion. The
approach taken in this work is based on partitioning a similarity graph. Vertices
in this graph represent trajectories and the weighted edges describe the pairwise
similarities between trajectories. Clusters are found by cutting the graph into com-
ponents. The standard objectives of clustering apply: trajectories within the same
cluster should be as similar as possible, and the similarity between clusters should
be as small as possible. Also, the cluster sizes should be balanced to a certain
extent.

4.4.1 Similarity graph

Section 4.3 presented four ways to define the dissimilarity between two trajectories.
However, spectral clustering requires pairwise similarities rather than pairwise dis-
similarities. In this work, a Gaussian-shaped similarity kernel [65] is used in order
to turn dissimilarities into similarities.
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s : R→ R, x 7→ exp
(
−x

2

σ2

)
(4.8)

Different parameterizations of the Gaussian-shaped similarity function in Equa-
tion 4.8 are found in literature, such as the one in [75] that shows the connection
to the heat kernel. Choosing to divide by σ2 simplifies interpretation. This way, it
is possible to think of x and σ having the same unit.

Any of the dissimilarities defined in Equations 4.3, 4.4, 4.6, 4.7 can be plugged
into the kernel in order to obtain the similarity matrix S ∈ RN×N , but the scene

distance range r̂
(
ρij

)
is of most interest in this work and used by default.

sij =

s
(
r̂
(
ρij

))
if |Tij | ≥ 2

0 otherwise
(4.9)

In the case where there is no or insufficient overlap in order to compute the
dissimilarity between two trajectories, the similarity is defined to be zero. Brox
and Malik [2] mention that two trajectories that do not overlap are still related via
transitive links in the similarity graph. This is an important property as demon-
strated in the evaluation. Unfortunately, a similarity value of zero does not carry
any information about whether two points were observed to move throughout the
whole video sequence or whether there were no observations to indicate otherwise.
In the former case, we have strong evidence for the points being on different rigid
objects whereas in the latter case, we are just uncertain.

The similarity graph should be connected. Otherwise spectral clustering would
result in finding the components of the graph [65]. It can happen that short tra-
jectories in areas of missing depth end up as separate components in the similarity
graph. Therefore, we keep only the largest component. The components are iden-
tified by searching the observation graph. Furthermore, the 3% of trajectories with
the lowest mean similarity to all other trajectories are discarded. The purpose is to
identify some outlier trajectories early.

4.4.2 Generalized eigensystem
The core step of spectral clustering consists of computing the eigenvectors. This
consists of finding the first nf eigenvectors corresponding to the smallest positive
eigenvalues in the generalized eigenproblem Lf = λDf where L = D − S (see Sec-
tion 3.4). In the implementation, we use the eigensolver for generalized self-adjoint
eigenproblems in the linear algebra package Eigen [76]. It is suitable because the
graph Laplacian L is real symmetric (thus also self-adjoint) and the degree matrix
D is positive definite. This is a solver for dense matrices and computes all eigen-
vectors and eigenvalues. Listing all eigenvalues and eigenvectors has computational
complexity O(N3). As long as the number of frames T is small enough compared to
the number of trajectories N , solving the eigenproblem is the theoretical bottleneck
in the presented motion segmentation algorithm.
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As only the first nf � N eigenvectors are needed, determining the full eigenspace
is not necessary. There exist efficient iterative algorithms for solving large (sparse)
eigensystems of the type in Equation 3.7 such as in the software package ARPACK
[77], which was chosen for the job. Using an iterative solver is a common motive in
applications of spectral clustering, see e.g. [2, 66].

4.4.3 K-Means
Following the recipe outlined in Section 3.4, we take the first nf eigenvectors cor-
responding to the smallest non-zero eigenvalues. By default, we choose nf = k − 1
where k is the number of clusters. As to computational costs, k-means runs so
fast that its runtime is negligible compared to the previous steps of computing the
dissimilarity and the eigenvectors.

4.4.4 Model selection
In order to make a system interesting for real applications for end users and conve-
nient to use by experts, its parameters should be automatically selected, taking only
a RGB-D video as bare input and segment the motion without further guidance.
While this is difficult to achieve, model selection is an important issue.

The parameters introduced so far in the system are the number of clusters k,
the bandwidth parameter σ for the similarity, and the number of eigenvectors nf

that are used as features in k-means. The implemented system supports automatic
selection of the bandwidth σ.

Similarity bandwidth σ

If one has to choose the bandwidth manually, then it makes sense to choose the
bandwidth σ to reflect the scale of the dissimilarities. The first implemented heuris-
tic chooses the bandwidth σ simply to be the mean of the dissimilarities. Besides
this mean heuristic, [65] also suggests another heuristic for the bandwidth σ. Here,
the edge with maximum weight ε is found in a minimum spanning tree of the dis-
similarity graph. Then the bandwidth is set to σ =

√
2ε, where the factor

√
2

is included for compatibility with the definitions in [65]. In the implementation,
Kruskal’s algorithm together with union-find [49] is used for constructing a mini-
mum spanning tree efficiently. The costs for computing these heuristics is therefore
low.

27





Chapter 5

Evaluation

In this chapter, we analyze the performance of the method. We begin with an
explanation of the evaluation method in Section 5.1 in order to introduce the per-
formance measures for different stages of the algorithm. In Section 5.2, we present
the datasets used for analysis in Section 5.3.

5.1 Evaluation method

The purpose of this evaluation is to understand the properties of the proposed
method, give a proof of concept, and show its limitations. Examples are particularly
useful for this purpose. Hence, the focus is on the qualitative evaluation, which
explores the cases when the method works, inspects the black box parts of the
method, and shows cases in which the method fails. Even though the evaluation
is mostly qualitative in nature, we quantify several aspects of the datasets and the
algorithm. In the following, we describe the external measures used to quantify the
error of the point tracker and the trajectory clustering stage.

5.1.1 Tracking performance

Point tracking is the first stage in the algorithm. Tracking produces the trajectories,
which make up all input seen by the subsequent clustering step. It is therefore
interesting to know how well the chosen point tracker actually performs. The first
measure we use is the corruption rate tc for measuring the amount of corrupted
trajectories defined in Equation 5.1. This fraction can be determined if the ground
truth segmentation is known.

tc = number of corrupted trajectories

N
(5.1)

However, this measure has shortcomings. Firstly, a trajectory is corrupted when-
ever the point tracker crossed the boundary of two dynamic objects at least in one
frame. This is counter-intuitive because the measure does not distinguish corrupted
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trajectories from randomly generated trajectories. This sharp criterion is also trou-
blesome if tc is computed from unreliable ground truth. Secondly, it weights all
trajectories equally regardless of their lifetimes.

In order to address these shortcomings, we derive an experimental, entropy-
based measure that is meant to be more informative. The key idea is to model the
tracking as a random process and measure the uncertainty in this process. Let the
i-th trajectory be composed of li points. Let us assume that each of the points lies
on a dynamic object given by the output of the i.i.d. discrete random variables
Yij ∈ {1, 2, . . . , C}, where C is the number of dynamic objects and 1 ≤ j ≤ li. The
entropy [78] for a random variable Y with probability distribution p is

H[Y ] = −
∑

y

p(y) log2 p(y) . (5.2)

The i-th trajectory is represented by the joint entropy of Yi = (Yi1, Yi2, . . . , Yili).
The joint entropy the sum of all individual entropies since the involved random vari-
ables were assumed to be statistically independent. We now define the (normalized)
entropy of the trajectories th as

th = 1
L log2C

N∑
i=1

li H[Yi] (5.3)

where L =
∑N

i=1 li is the sum of all trajectory lifetimes. This measure addresses
both shortcomings of the simpler corruption rate. The entropy H[Yi] is maximum
if the distribution pi of Yi assigns the same probability to all dynamic objects and
zero if pi = 1 for a single dynamic object (see [78]). Trajectories with a longer
lifetime have more influence on th. The division by log2C ensures that 0 ≤ th ≤ 1
because the entropy H has minimum value zero and maximum value log2C [78].

5.1.2 Analysis of trajectory statistics

In the previous section, we defined the error measures for the trajectories. In this
section, we continue to the question on how to assess the quality of the dissimilarities
between the trajectories, i.e. the 3-d range, 3-d variance, 2-d range, and 2-d variance.
The construction of the dissimilarity graph in Section 4.3 is driven by the idea that
trajectories should be assigned high dissimilarity if the tracked points lie on different
moving rigid objects. The use of the sample range and the sample variance feels
intuitively right, but these statistics have not been derived in a principled manner.
The question is whether their use is justified. We are trying to answer this question
by comparing the dissimilarity graphs with the ideal case. In the long run, it is
probably best to have a large benchmark for deciding which statistics works best.
Yet, in this thesis with limited data for evaluation, analyzing the intermediate stages
might be helpful to assess why the system performs well in certain scenarios and
has difficulties in other.
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5.1.3 Clustering performance
The quality of the segmentation can be measured by comparing the clusters esti-
mated by the algorithm with the clusters given by ground truth. For this purpose,
the adjusted Rand index [79] is used in this work as an external quality measure.

Ground truth

The adjusted Rand index requires ground truth. We use pixel-wise segmentations of
the dynamic objects in the video frames as ground truth. These label images provide
the true labels for the trajectories. The label images for the real-world scenes used
in this evaluation (Section 5.2) have been created manually. Only every eighth
frame has been annotated. The obtained ground truth data is “dense in space and
sparse in time” [2]. We annotated either the depth frames or the color frames in the
RGB-D videos using mostly the flood filling tool in GIMP [80]. While this approach
is reasonably simple, it remains tedious and leads to inaccurate segmentations at
the boundaries of the objects where neither the depth images (lateral noise) nor the
color images (shadow, blur) are helpful cues for the human eye.

Adjusted Rand index

The adjusted Rand index measures agreement between two partitions of a set. It is
corrected for chance, which means that it measures improvement over a randomly
obtained partition (see [79] for details). The adjusted Rand index ranges between
-1 and 1, where larger values indicate better agreement.

The true labels for the trajectories are obtained from the label images. It can
happen that label images from two or more video frames specify different labels for
the same trajectory, in which case we ignore these trajectories when computing the
adjusted Rand index. Such is the case if the trajectory is corrupted, or the label
images are not pixel-accurate segmentations of the dynamic objects.

5.2 Datasets
We used four datasets for evaluation. By using many datasets of different charac-
ter, we hope also to explore many different properties of the method. This section
describes the scenes contained in all four datasets. Three of them have been created
as part of this work. These are the Office Dataset (Section 5.2.1), the Smart Mo-
bility Lab Dataset (Section 5.2.2), and the Simulated Dynamic Scene Dataset (Sec-
tion 5.2.3). The fourth dataset is the TUM RGB-D Benchmark [54] (Section 5.2.4).
All the videos have a resolution of 640× 480 pixels.

5.2.1 Office Dataset
The Office Dataset consists of altogether eight scenes in an office environment.
Figure 5.1 shows one particular frame for each of the eight videos. Table 5.1 provides
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Scene Frames Short description

certificate 123 handheld moving camera; motion mostly in a plane
poster 113 fixed camera; motion mostly in a plane
prml 67 fixed camera; motion along the optical axis
momo 129 fixed camera; stop and go
globe_s 157 handheld fixed camera; rotation
globe_m 123 handheld moving camera; rotation
two_books 59 fixed camera; two objects
static 236 handheld moving camera; static scene

Table 5.1: Characteristics of the scenes from the Office Dataset. The scenes are
designed to contain various kinds of motion for both the camera and the objects in
the scene.

an overview about the scenes. The idea behind this dataset is to explore scenes
containing motion with various qualities.

certificate A textured planar object moves first mostly fronto-parallel to the
camera (Figure 5.1a) and then away from the camera. The camera itself is
moving along a circle.

poster A large poster is waved in a fronto-parallel plane of a fixed camera (Fig-
ure 5.1b). The background is at a depth of up to 3 m. The foreground object
is large in comparison to those in other scenes.

prml A book is moved away along the optical axis of a fixed camera. This scene
complements the poster scene. The poster scene shows translational motion
whereas the prml scene contains motion along the optical axis.

momo A book is moved fronto-parallel of a fixed camera, stopping for a second
in the middle of the video. This scene asks for a solution of the temporary
stopping problem.

globe_s A globe is rotated on a lazy susan in front of a fixed camera about around
180 degrees. This is a prototypical scene for incomplete trajectories, as points
on the globe appear and disappear.

globe_m A globe is rotated on a lazy susan in front of a moving camera. This is a
version of globe_s with the additional challenge of a moving camera.

two_books Two books are moved in a fronto-parallel plane in front of a fixed
camera. This scene is a test case for the ability to segment multiple objects.

static The camera is moved sideways in a static scene. This scene is mostly
included for debugging purposes.
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(a) certificate (b) poster (c) prml (d) momo

(e) globe_s (f) globe_m (g) two_books (h) static

Figure 5.1: The eight scenes from the Office Dataset. The scenes include planar
motion, motion along the optical axis, temporary stops, rotation, moving cameras,
more than one dynamic object, and no motion at all.

5.2.2 Smart Mobility Lab Dataset
The Smart Mobility Lab Dataset contains four videos of model trucks driving around
in the Smart Mobility Lab (SML) at KTH. A frame for each video is shown in
Figure 5.2, and the properties of the scenes are listed in Table 5.2. The videos
exhibit some interesting properties. First, some of the dynamic scenes involve more
than one truck. Second, some of the scenes contain moving semi-trailer trucks.
Second, the dataset contains videos with both moving and fixed cameras.

(a) truck_s (b) truck_m (c) two_trucks_s (d) two_trucks_m

Figure 5.2: Four scenes from the Smart Mobility Lab Dataset.

The scenes in the SML dataset are challenging for our proposed method. The
trucks only cover small regions in the video. The trucks are not really rigid bodies
but rather articulated objects1. Little and repetitive texture on floor and the truck
trailers make point-tracking difficult.

truck_s A single semi-trailer truck passes in front of a handheld fixed camera. The

1British English: articulated lorry. American English: semi-trailer truck.
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truck appears in the scene only after thirty frames of the video and disappears
around fifty frames before the video ends.

truck_m A single semi-trailer truck passes in front of a handheld moving camera.
The truck drives along a curve, which means that the motion observed by the
camera is not only translational.

two_trucks_s Two semi-trailer trucks pass each other in front of a handheld fixed
camera. The trucks are not visible in the whole scene. In the curve, the
articulated motion of the semi-trailer trucks is clearly visible.

two_trucks_m Two semi-trailer trucks pass each other in front of a moving camera.
One of the trucks occludes the other while passing.

Scene Frames Short description

truck_s 223 handheld fixed camera; one truck
truck_m 246 handheld moving camera; two trucks
two_trucks_s 227 handheld fixed camera; two trucks
two_trucks_m 261 handheld moving camera; two trucks

Table 5.2: Characteristics of the scenes from the Smart Mobility Lab dataset. The
scenes are designed to show all combinations of a moving vs. fixed camera and one
vs. two objects.

5.2.3 Simulated Dynamic Scene Dataset
Apart from real scenes, we also use simulated dynamic scenes (SDS) in the evalua-
tion. The simulated scenes serve as a proof of concept, help understand the system,
and are useful to verify the implementation. The simulations enable us to obtain
datasets with pixel-accurate ground truth segmentation. Because it is not clear how
well the sensor models capture the characteristics of their real counterparts, we do
not make any claims about system performance on real scenes. Such claims would
require rigorous model validation, which is too costly to be within the scope of this
work. Table 5.3 lists the properties of the four simulated scenes. In the following,
we describe the four dynamic scenes we modeled, and how they were rendered into
a sequence of color and depth images.

Scene Frames Short description

vwt3_m 50 moving camera
vwt3_o 50 like vwt3_m, but with occlusion
two_vwt3 50 like vwt3_m, but with two objects
earth 50 fixed camera; rotating sphere

Table 5.3: Characteristics of the scenes from the Simulated Dynamic Scene Dataset.
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(a) vwt3_m (b) vwt3_o (c) two_vwt3 (d) earth

Figure 5.3: Four scenes from the Simulated Dynamic Scene Dataset.

Modeling of dynamic scenes

We used the Blender 3-d animation suite [81] for modeling the static background
and the dynamic foreground, for rendering the dynamic scene into a sequence of
color images, and for exporting the ground truth segmentation. Blender is well-
suited for these tasks. Many models can be found on the web for download, which
is convenient for less experienced users. Among these models is a room2 serving as
a building block for the simulated scenes shown in Figure 5.3. The virtual room has
white walls and a white ceiling, a wooden floor, and a lattice window. As the walls
and the ceiling of the pre-built room model do not provide any texture, we applied a
few postcards sparingly to the wall right of the window. A “radio-controlled” model
of a Volkswagen T3 serves as a dynamic object in the foreground. Before going into
detail on how the scenes were created, we describe the four simulated scenes used
in this evaluation:

vwt3_m This simulated scene is shown in Figure 5.3a (vwt3_m). It features a moving
camera and a single object. The camera follows a model car moving on a curve
along the walls. The window in the background would be troublesome in
reality if a depth sensor is employed that actively uses infrared for measuring
depth. In the simulation, we skip over that detail and take advantage of
the lattice in the window, which provides some features for the point tracker.
Altogether, this scene is remotely similar to the truck_m scene from the Smart
Mobility Lab Dataset.

vwt3_o Figure 5.3b shows this scene. It is equal to the vwt3_m scene in all aspects
except that for an inserted plane. The plane occludes the car completely for a
short moment. The purpose of this variant is to study the effects of occlusion
on the segmentation results.

two_vwt3 This scene is depicted in Figure 5.3c. Again, it is a variant of vwt3_m but
features two model cars instead of one. The extra car moves in the opposite
direction and partially occludes the first car. This scene serves experiments
with more than one dynamic object in the scene.

2CC BY 3.0 US. Copyright 2003-2014 Andrew Kator & Jennifer Legaz, retrieved 2013 from
http://www.katorlegaz.com/3d_models/arch_interiors/0012/index.php. The model has been
modified.
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Figure 5.4: Workflow for evaluating dynamic scenes simulated with Blensor. The
dynamic scene is first modeled with the Blender 3-d animation suite. The ground
truth segmentation of the dynamic objects is exported to disk. Exporting the poses
is supported by Blender. The dynamic scene is rendered to a sequence of color
images and depth images. The motion in the rendered video is segmented and
compared against ground truth.

earth Apart from sharing the static background, this scene is different from the
other simulated scenes (Figure 5.3d). It shows a globe performing a 360 degree
rotation. The scene is observed by a static camera. The idea is to have a
simulated scene that is similar to the globe_s scene.

Creating these scenes might sound like a daunting task. However, Blender comes
with a range of features that limit the costs of simulation. In order to obtain
these datasets, we followed the workflow shown in Figure 5.4. In the first step, we
setup the static scene, which consisted of loading the pre-built room model into
Blender, equipping it with some interior lighting, and UV-mapping some pictures
as postcards to the wall. These are all common activities within Blender and are
well-documented.

In the second step, we inserted the dynamic objects into the scene, which com-
prise the detailed Volkswagen T3 model and the earth model. The Volkswagen T3
model has been kindly made available by Gabriel Adorf. The texture on the earth
model stems from the Visible Earth catalog by NASA [82]. Blender allows us to an-
imate these objects by inserting location and rotation at keyframes. Blender then
interpolates motion between these keyframes. This leads to very smooth camera
motion unlike the motion of the handheld cameras in the Office and Smart Mobility
Lab datasets. Yet, the camera is in motion all the time in all simulated scenes
except the earth scene. This is a challenge for the point tracker.

Having the scene built and animated, the third step consists of exporting pixel-
correct ground truth segmentation. Blender allows us to assign a pass index to each
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(a) Rendered image. (b) Node editor. (c) Label image.

Figure 5.5: Blender supports exporting the ground truth segmentation via the
Blender node editor. The objects can be selected and marked with a pass index in
Blender. The node editor can be used to generate masks for each pass index. Note
that occlusion is automatically handled. In a remaining step, an extra script fuses
the separate masks into a single label image.

object. These pass indices are used for masking the objects while the scene is ren-
dered. We take advantage of Blender’s node editor (Figure 5.5) to fully automatize
the process. The creation of the static scene, the dynamic content, and the ground
truth already covered, there is one critical question: how to obtain RGB-D videos
from the modeled dynamic scenes in Blender?

Sensor models

The motion segmentation algorithm requires RGB-D videos as input. Thus, we
need both a model for a color camera and a model for the depth sensor. These
sensor models are described in the following.

Rendering a scene into a color video is supported by Blender out-of-the-box. By
default, Blender renders each frame from the current position of the camera. This
does not account for the effects introduced by a real camera in motion. Videos
from a real moving camera suffer from motion blur. While on the wishlist for extra
realistic scenes, we did not take the extra step to introduce motion blur in the scene
and used the defaults. More care was taken with the lighting, which also has an
impact on the performance of the point tracker. For example, the wall reflects light
diffusively while the glass on the model car features specular reflection.

For simulation of the depth sensor, we use Blensor [83]. Blensor extends Blender
by adding various depth sensor models such as the Kinect. The interface to the
depth sensor models is integrated with Blender such that modeling the dynamic
scene, rendering the dynamic scene to color, exporting ground truth segmentation,
and the depth sensor simulation can be done all within Blender/Blensor. The
depth sensor models generate point clouds in the format defined in the Point Cloud
Library [84].

The Kinect sensor model was used for all simulations. This model is supposed
to simulate the depth sensors of the real Kinect or the very similar Asus Xtion.
According to the Blensor documentation at the time of writing, this sensor model
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Figure 5.6: Axial noise of Blensor’s Kinect sensor model (blue points) compared
with the axial noise model (red curve) presented by Nguyen et al. [58]

has not undergone model validation yet. Nevertheless, we expect the sensor model to
exhibit similar noise characteristics as its real counterpart. No time could be spent
on model validation. But we at least verified the sensor model implementation by
testing it against an empirically derived noise model of the Kinect by Nguyen et
al. [58]. Their empirical noise model (Equation 5.4) gives the standard deviation σz

of the axial noise depending on the depth z and angle θ of a plane.

σz (z, θ) = 0.0012 + 0.0019(z − 0.4)2, 10◦ ≤ θ ≤ 60◦ (5.4)

Blensor’s Kinect sensor model should exhibit a similar relationship between stan-
dard deviation in the direction of the optical axis and the depth of the object. In
order to verify this, we set up a Blender scene consisting of a single planar surface
perpendicular to the camera. We then measured the standard deviation of all depth
points from a perpendicular plane fitted to the point cloud. The standard deviation
was measured at ten equidistant steps between 0.5 m and 2.75 m. Thanks to per-
pendicularity, the plane fitting reduces to finding the mean of the depth values of all
points. By using a perpendicular plane, we generously ignored the constraint on the
angle in Equation 5.4. In summary, we reproduced parts of the experiment in [58],
just with a sensor model rather than a real camera. Judging from the results of the
experiment in Figure 5.6, the sensor model captures the relation between depth and
noise in Equation 5.4 well.

As a side note, we also experimented with depth measurements of tilted planes
in recordings with the real Asus Xtion. Plane fitting with RANSAC [10] as is done
by [85] turned out to be harmful. The reason is that depth maps of planar surfaces
recorded by a Kinect-like sensor look like step functions. Rather than fitting a plane
to all the points, RANSAC selects a level set, which likely leads to a bad fit.

Based on these experimental results, we used Blensor’s default parameter con-
figuration for all simulated scene datasets. We used Blensor at git commit a5ac165.
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5.2.4 TUM RGB-D Benchmark

The TUM RGB-D Benchmark [54] contains several dynamic scenes. The dynamic
content in these scenes is included as a challenge for camera trackers. The bench-
mark only provides ground truth for the motion of the camera with respect to the
static background that is dominating the recorded scene. The true motion of the
moving objects themselves is not known. Furthermore, the scenes contain people
who are moving non-rigidly, which conflicts with one of the assumptions made in
this thesis. Hence, the TUM RGB-D Benchmark is only of limited use for evaluat-
ing our method. Despite of this, we selected four videos from the benchmark that
include large motion. One of them is depicted in Figure 5.7. The purpose is to
gather some numbers on these videos with hundreds of frames. These four videos
are listed in Table 5.4.

Figure 5.7: Four frames of the video (freiburg3 walking halfsphere) from the TUM
RGB-D Benchmark. This is not only a difficult scene for visual SLAM algorithms
but also for motion segmentation. The scene features a moving camera and the
people are moving non-rigidly, occlude each other, are occluded by other objects,
and temporarily disappear.

Scene Frames Short description

fr3_walking_static 714 fixed camera; walking persons
fr3_walking_halfsphere 1018 moving camera; walking persons
fr3_walking_xyz 826 translating camera; walking persons
fr3_walking_rpy 864 rotating camera; walking persons

Table 5.4: Characteristics of the scenes from the TUM RGB-D Benchmark.

5.3 Analysis

In this section, we describe both qualitative and quantitative results for the various
stages of the motion segmentation algorithm. We start by analyzing the results
of the point tracker (Section 5.3.1), continue with investigating into the statistics
computed on the trajectories (Section 5.3.2), before looking on the overall system
(Section 5.3.3).
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Figure 5.8: Trajectory length histograms for scenes prml, two_books,
two_trucks_m, and vwt3_m. The distributions reflect scene aspects such as oc-
clusion and camera motion.

5.3.1 Point tracking

The evaluation of the point tracker resulted in several findings. First, the lifetime
of the trajectories compared to the length of the videos varies a lot between the
different datasets and that the ability to handle incomplete trajectories is impor-
tant for the presented method. Second, the observation graph consisted of several
connected components in some occasions – an issue that can be fixed but is best
avoided right from the beginning. Third, the point tracking stage does not only
result in a certain quantity of corrupted trajectories but also leads to undesired
effects at the boundaries of dynamic objects.

Incomplete trajectories

Missing data comes in different shapes, depending on the characteristics of the
scenes. The trajectory lifetimes are summarized by histograms. The histograms
for all videos are listed in Figure A.1 in the appendix. Four of those histograms
are also shown in Figure 5.8. The histograms for the scenes prml, two_books,
two_trucks_m, and vwt3_m have different shapes. There are a few things that can
be learned from these histograms.

Even in the scenes with fixed camera, the trajectories are incomplete. For ex-
ample in the prml scene, the camera was attached to the table and the book is
moved away from the camera in front of a wall where almost no features are found.
Nevertheless, the scale of the book in the images changes over time and the im-
ages are noisy. The point tracker started to track a large group of points in the
middle of the video for the remaining 37 frames. This explains the two groups of
trajectories in the histogram (see Figure 5.8), one spanning the whole scene and
the other spanning only roughly the last half of the video. The histogram suggests
that the tracker might be changed to add new keypoints continuously rather than
adding them in large chunks as soon as the number of tracked points falls below the
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tc th
vwt3_m 0.020 0.018
vwt3_o 0.019 0.010

two_vwt3 0.031 0.014
earth 0.048 0.030

truck_s 0.031 0.021
truck_m 0.13 0.19

two_trucks_s 0.084 0.050
two_trucks_m 0.068 0.046

tc th
certificate 0.034 0.027

poster 0.010 0.0085
prml 0.017 0.013
momo 0.12 0.095

globe_s 0.091 0.086
globe_m 0.048 0.052

two_books 0.19 0.12
static 0 0

Table 5.5: Corruption rate tc and trajectory entropy th for all videos with ground
truth segmentation.

minimum threshold.
The missing data in the trajectories are cumbersome in theory because they lead

to special cases in definitions (see Equation 4.9), and in the implementation. One
might therefore ask, why incomplete trajectories should not simply be discarded? To
answer this question, let us consider the scenes two_books, two_trucks_m, globe_s,
and earth. The two_books scene shows two books being waved in front of the
camera, thereby occluding parts of the background. The trucks in two_trucks_m

are not visible during the whole scene. The scenes globe_s and earth show a
rotating object, which also leads to incomplete trajectories.

Corrupted trajectories

The point tracker is not always accurate. Here, we quantify the amount of cor-
rupted trajectories using the corruption rate and trajectory entropy as defined in
Equations 5.1 and 5.2.

The corruption rate and the trajectory entropy can be reliably and accurately
measured on the simulated scenes because of their pixel-accurate ground truth seg-
mentation in all frames. In summary, 1.9 - 4.8 percent of all trajectories produced
by the point tracker in the simulated scenes are corrupted. Details are provided in
Table 5.5.

There is a type of drift that goes undetected by the corruption rate and the
trajectory entropy. The point tracker sometimes follows points that lie on an “in-
visible extension” close to the boundary of a dynamic object in front of untextured
background. Such “hitchhikers” are shown in front of the car in Figure 5.9a, where
points were mistakenly classified to belong to the car in scene vwt3_m.

Corrupted trajectories correlate with serious errors in motion segmentation,
which happens in the two_books scene. Here, a book is moved from the left to
the right (Figure 5.9b) in front of the camera. On its way to the right, keypoints
from the background get “picked up” by the book such that the corrupted trajecto-
ries describe points on the background first, and on the foreground later. This issue
caused by drift motivates recent work by Ricco and Tomasi [37]. The corrupted

41



CHAPTER 5. EVALUATION

(a) The point tracker mis-
takenly follows “invisible”
points in front of the model
car.

(b) Corrupted trajectories
can lead to serious prob-
lems in the final segmenta-
tion.

(c) The ground truth seg-
mentation reveals a large
group of corrupted trajec-
tories.

Figure 5.9: The point tracker does not know about the boundaries of objects (a).
In another scene, wrong clustering results are obtained (b) in areas with many
corrupted trajectories (c).

trajectories are shown in Figure 5.9c, where markers (x) on white background de-
note corrupted trajectories. It might well be that such corrupted trajectories can
be automatically detected using depth data because the depth values are likely to
change abruptly at object boundaries.

Runtime

The point tracker works at half real-time speed and manages between 12 and 13
frames per second on average for the given datasets. The frame rate depends on
the characteristics of the video, e.g. the simulated dynamic scenes were processed
only at 8-9 frames per second. The tracker is running serially.

Conclusions

The point tracker operates solely on the image plane and does not consider depth
at all. In some cases, this results in many corrupted trajectories across depth dis-
continuities. Conversely, the 3-d sample range and the 3-d sample variance operate
with depth only, not taking any discrepancies with visible boundaries in the image
into account. This means that the point tracker in 2-d and the statistics in 3-d do
not work optimally together. Some of these problems can successfully be identified
using the corruption rate and the trajectory entropy. These measures have helped
to identify the problems with corrupted trajectories at motion boundaries in the
two_books scene. Pixel-accurate ground truth segmentations for all videos would
be helpful to determine the exact amount of corruption also for all real scenes.

Despite of the mentioned issues, an advantage of the point tracker is its speed.
While not running in real time, it processes several frames per second, which makes
the point tracker interesting for applications.
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5.3.2 Trajectory statistics

The concept in Section 4.1 described how to reason about motion in the scene, based
on measuring pairwise distances between scene points. In Section 4.3, we defined
four statistics on the distances measured for a pair of scene points. The question
is how well these statistics work in practice. It turns out that on a coarse scale,
the statistics are indeed a useful indicator for separating trajectories that describe
points on different rigid objects. On a detailed scale, the analysis revealed that
outliers in the dissimilarity graph can cause difficulties for spectral clustering.

Dissimilarity box plots

Are the range and the variance good at distinguishing between points on different
rigid objects in practice? Box plots [86] are used in the following to answer this
question. These dissimilarity box plots summarize the performance of the 3-d range,
the 3-d variance, and their 2-d variants.

We explain the idea and interpretation of these box plots using the example in
Figure 5.10a. This plot summarizes computed dissimilarities r̂(ρij) between trajec-
tories i and j in the prml scene. The plot groups trajectory pairs {i, j} based on
whether the respective scene points lie on the same rigid object or on different rigid
objects. Each of the three boxes shows the (standard) lower quartile, the median,
and the upper quartile of the values r̂(ρij). The upper whisker is omitted. The
quartiles and the median help assess whether our expectations hold: r̂(ρij) assigns
low dissimilarity to pair of points on the same object, and assigns high dissimilarity
to pairs of points on different objects.

The plots work also in scenes with multiple objects, such as the scene two_books
(Figure 5.11). The dissimilarity box plots for all annotated videos are listed in
Appendix A.2.

Translational motion assumption

The dissimilarity box plots indicate that the 3-d range is superior over the 2-d range
in separating the motion in the prml scene. The only motion in this scene is a book
that moves away from the camera along the optical axis. Both the 3-d range and
the 2-d range treat the background (label 0) correctly. The 3-d range, however,
detects the change in depth of the book (label 1), whereas the 2-d range is confused
by the scale change of the book in the image plane. The box plots in Figures 5.10b
and 5.10a make this effect visible.

Missing depth

The 3-d distances can only be computed where depth is available. RGB-D cameras
like the Kinect and the Xtion (Section 3.1) do not provide depth information in
all regions of the video frames. Depth is missing for example for objects too close
or too far from the camera. Another reason is that the infrared projector and the
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Figure 5.10: The four box plots show how the values of the 3-d range, the 2-d range,
the 3-d variance, and the 2-d variance are distributed in the scene prml. The rigid
objects are labeled with 0 (here: background) and 1 (here: dynamic foreground).
The boxes summarize the pairwise dissimilarities of points on the same rigid object,
and the dissimilarities between points on different rigid objects (indicated by 0:1).
The whiskers are omitted due to the lack of space. The concept extends to multiple
rigid objects.

infrared sensor of the Kinect and the Xtion are placed next to each other, causing
objects in the foreground occlude areas in the background where the infrared sensor
cannot measure depth. How much depth is missing depends on the particular scene.
Figure 5.12 shows the average percentage of distances that cannot be computed in
3-d due to missing depth. Between 16% and 25% of the 3-d distances cannot be
computed in the scenes in the Office dataset and the SML dataset. The scenes in
the TUM RGB-D Benchmark are recorded in a large hall, and parts of the scenes
are out of range for the depth sensors. In practice, points with depth larger than
a certain range shall not be included in the computation, which is a good idea also
because the noise in the depth measurements grows quadratically with the depth
for the Kinect and the Xtion [58].

Runtime

The computation of the dissimilarities between the up to N(N − 1)/2 pairs of
trajectories over all F frames runs with around 100 frames per second (wall time)
on average on all datasets. However, this speed is not achieved because the algorithm
is efficient (see Section 4.3.3), but rather because the computation runs in parallel.
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Figure 5.11: The box plots summarize the sample distribution of the 2-d range and
the 2-d variance in the scene two_books.
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Figure 5.12: Percentage of distances not computable due to missing depth.

The number of comparisons is large. Nearly 52 million comparisons in 2-d were
performed on average on the Office dataset. For the longer scenes in the SML
dataset, nearly 100 million distance computations in the image plane took place.
With several hundreds of frames per video, the TUM RGB-D Benchmark requires
roughly 350 million comparisons on average in order to construct the dissimilarity
graph. The routines to compute the dissimilarities between pairs of trajectories
have to be implemented carefully. It is an advantage if the dissimilarity measures
are relatively simple with regards to the implementation, such as the range and the
variance.

Conclusions

The dissimilarity box plots show that the median dissimilarity within clusters is
lower than the median dissimilarity between clusters for many scenes. This confirms
that the conceptual idea in Section 4.1 of rigid points keeping the same distance
can be put into practice. In other scenes, the box plots raise doubts on the quality
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(a) using jet color map (b) grayscale (c) labels

Figure 5.13: The second eigenvector of the poster scene, visualized in color (a) and
in grayscale (b). In this simple scene, k-means finds the labels (c) with ease, using
the second eigenvector as input alone.

of the trajectories and the dissimilarity measures. The dissimilarity box plots are
coarse tools, and do not capture the whole nature of the dissimilarity graphs. The
next section shows that a more detailed analysis reveals issues. These issues are not
obvious from the dissimilarity box plots.

No clear answer can be given to the question whether the 3-d range and the 3-d
variance are superior or inferior to their 2-d counterparts. A weakness of the 3-d
variants is their inability to handle missing depth whereas the 2-d variants suffer in
particular cases from the assumption of translational motion.

5.3.3 Trajectory clustering

In this section, we analyze the last stage in the pipeline, where the similarity graph
is constructed and partitioned by spectral clustering. Unless noted otherwise, the 3-
d range is used to construct the similarity graph. We present scenes where motion
is segmented successfully. These serve as model exemplars on how results and
intermediate results look like in the case of success. But the issues can be best
discussed on scenes in which the algorithm has problems. These scenes are valuable
as they show when and where the algorithm is not sophisticated enough to even
segment scenes that it has been trained on. We finish the section with a discussion
of the model selection mechanisms, the overall performance, and the runtime of the
system.

Cluster structure in the eigenmap

Partitioning the similarity graph (see Section 4.4.1) is a two-step process. The first
step consists of mapping the vertices to a low-dimensional embedding [75], which
is referred to as the eigenmap. The expectation in spectral clustering is that these
vertices are located in this low-dimensional space such that the cluster structure
becomes apparent. The second step consists of actually extracting the clusters from
this feature space and assign discrete labels to the trajectories.

46



5.3. ANALYSIS

(a) second (b) third (c) fourth (d) fifth

Figure 5.14: The eigenvectors 2–5 of the two_books scene all contain information
about the clusters. The second eigenvector tells the first book apart where as the
other three eigenvectors separate the other book.

Thus, the cause of problems in the label assignment can be either due to the
clusters being hard to distinguish in the eigenmap, or due to an algorithm that
is not sophisticated enough to find these clusters. In the following, examples of
eigenmaps are presented where the structure of the clusters is (1) well-pronounced,
(2) pronounced but distorted by outliers, (3) totally distorted by outliers.

The first question is how well the second eigenvector f2 separates the clusters in a
scene with two clusters. In the ideal case, the second eigenvector would be sufficient
and the task of k-means consists of choosing the threshold. This is indeed the case
for some scenes. Figure 5.13 shows the second eigenvector and the segmentation
for the poster scene. There are no difficulties here for k-means to find a good
segmentation based on the second eigenvector. The same conclusion can be drawn
for scene prml, which is depicted in Figure 5.17b.

The second question concerns the eigenvectors corresponding to the third eigen-
value and beyond. What information about the clusters do they reveal? We follow in
the footsteps of Brox and Malik [2], and plot the eigenvectors in order to gain insight
into what they tell about the boundaries of the dynamic objects. The two_books

scene serves as an example for the discussion. This scene has been recorded with
a fixed camera setup and shows two moving objects. The second eigenvector is
sufficient to tell the left book apart (Figure 5.14a). In the third eigenvector, the
structure is less pronounced (Figure 5.14b), especially in the area of the corrupted
trajectories near the book to the right. The fourth and the fifth eigenvector contain
enough information to even overcome the problem with the corrupted trajectories
shown in Figure 5.9c. Projections of the feature space illustrate this in Figure 5.15.

Negative impact of outlying trajectories

Unfortunately, the evaluation revealed that outlier trajectories can significantly dis-
tort the feature space and cause k-means to form clusters of outliers. Before showing
scenes where this happens, we look at the scene prml, where the outlier problem
is moderate and does not prevent k-means from finding a good segmentation. Fig-
ure 5.17a shows the 2-dimensional feature space spanned by the rows of the second
and third eigenvector. Here, the labeling has been determined by k-means based on
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(a) second and third (b) second and fourth (c) second and fifth

Figure 5.15: Projections of four-dimensional feature space to two dimensions. The
feature space is spanned by the rows of the eigenvectors 2-5 of the two_books scene.
k-means separates the clusters in the four-dimensional space well.

thresholding the second eigenvector only. The large majority of the 933 trajectories
are mapped to similar spots in the upper corners of the feature space depicted in
Figure 5.17a. Around 30 trajectories are widely spread over the feature space. It
is illustrative to show which trajectories these outliers correspond to. To this end,
we identified six clusters with k-means (Figure 5.17d). The result of this experi-
ment is easy to interpret: the small outlying clusters belong to regions close to the
object boundaries and to the articulated hand (Figure 5.17f). The separation of
trajectories on the hand is a desired feature, while the outlying trajectories near
the boundaries are undesirable. Most likely, these trajectories are corrupted and
contain points both on the far-away wall and the book in the foreground.

The prml scene with fixed camera, roughly equal-sized clusters, and around
3% outliers in feature space, the problem with outliers showed to be less problematic
than in other, more challenging scenes. For example, in the simulated earth scene,
we observed that a trajectory got mapped so far away from all other data that
k-means formed a single-element cluster. This observation is the reason why the
filtering step described in Section 4.4.1 is included.

Even in the relatively easy prml scene, a single outlying trajectory has been
observed to completely distort feature space, leading to the outlying trajectory
forming a cluster by itself. In order to understand why this happens, the outlier
trajectory has been analyzed in more detail. The outlier trajectory spanned the
whole video and was located in a region of static background. The depth values
were piece-wise constant but contained discontinuities. These discontinuities can
be traced back to color sensor noise, causing the point tracker describe two points
across a depth discontinuity with a single trajectory. Generally, depth sensor noise
is also a problem. Both the sample range and the sample variance yield large
dissimilarities between the outlier trajectory and the other trajectories. Thus, the
outlier trajectory ends up with a low degree in the similarity graph with reasonable
choices of bandwidth. Spectral clustering assigns the outlying trajectory a high
value in the eigenvectors, as can be seen in the plot of the second eigenvector in
Figure 5.16.
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Figure 5.16: The second eigenvector in the prml scene. The single outlier trajectory
is separated from the rest of the scene by k-means. Such artifacts created by noise
need to be filtered away.

(a) (b) (c)

(d) (e) (f)

Figure 5.17: The second and third eigenvector are plotted on the x-axis and the
y-axis, respectively (a). Thresholding the second eigenvector suffices for finding a
good segmentation (b–c). However, noise and articulated motion lead to outliers in
feature space (a). These outliers can be segmented with k-means by over-segmenting
with a large number of clusters (d). The outlier trajectories are found on the
boundary of the book and the articulated hand (e–f).
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Bandwidth selection

Choosing a good bandwidth parameter value can be tricky. As stated in Sec-
tion 4.4.4, it is convenient if the bandwidth can be selected automatically. In order
to objectively evaluate the performance of the selection mechanisms, we would need
a set of unseen sequences. Instead, we take a shortcut for at least obtaining ball-
park estimates on whether the heuristic might be useful. To this end, we determine
values for the bandwidth parameters manually in scenes from the Office dataset,
the SML dataset, and the SDS dataset. The bandwidth values are then selected
with the mean heuristic or with the minimum spanning tree heuristic based on the
dissimilarity graph.

Table 5.6 lists the obtained adjusted Rand indices. The experiments have been
repeated 25 times to account for the randomized parts in the algorithm. The sample
standard deviation of the measured adjusted Rand index was less than 3·10−4 for all
scenes except for the truck_m scene, where the sample standard deviation was up
to 8 · 10−2. All bandwidth values can be interpreted in meters. Thus, the manually
selected bandwidth values are in the range of millimeters or a few centimeters. The
selected values span a relatively large range.

Overall performance

Overall, some but not all RGB-D videos could be segmented. The presented method
segments the motion well in scenes certificate, poster, prml, momo, truck_s,
truck_m, two_books, and vwt3_m. It gives mixed results for the scenes globe_s and
two_vwt3, and earth. The method is not sophisticated enough to provide reason-
able motion segmentations for the scenes globe_m, two_trucks_s, two_trucks_m.
Neither could the four selected videos from the TUM RGB-D Benchmark be seg-
mented.

Ideally, an algorithm should be powerful enough such that it can be trained
perfectly on the training dataset, even though it is the generalization error on unseen
instances that needs to be minimized. There remains more work to do in order to
make the motion segmentation method sophisticated enough to segment all of the
scenes included in the evaluation.

Nevertheless, the eight scenes where the method succeeded comprise scenes with
moving cameras, scenes with more than one dynamic object, scenes with temporary
stopping, scenes where objects appear and disappear, and scenes with motion in
all directions. Segmentations for the scenes listed in Table 5.6 can be found in
Figure A.6.

Runtime

In the final part of the evaluation, runtimes are presented for the whole motion
segmentation algorithm. The runtimes are given for the scenes listed in Table 5.6,
i.e. for those scenes where a reasonable motion segmentation could be obtained.
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Scene Manual ARI Mean ARI MST ARI

certificate 0.0050 0.88 0.059 0.29 0.0091 0.91
poster 0.020 0.94 0.090 0.75 0.034 0.94
prml 0.0050 0.98 0.030 1.00 0.0095 1.00
momo 0.010 0.88 0.19 < 0 0.015 0.82
globe_s 0.10 0.71 0.18 0.66 0.032 0.46
two_books 0.050 0.80 0.092 0.72 0.030 0.35
truck_s 0.20 0.84 0.26 0.83 0.12 < 0
truck_m 0.25 0.79 0.61 0.51 0.062 0.32
vwt3_m 0.050 0.98 0.20 0.86 0.034 0.24
two_vwt3 0.10 0.67 0.20 0.67 0.036 0.62
earth 0.20 0.69 0.080 0.34 0.053 0.33

Table 5.6: Selection of the bandwidth parameter σ: manually, with the mean heuris-
tic, and with the minimum spanning tree heuristic. The adjusted Rand index is
reported for each bandwidth choice.

The experiments were performed on a up-to-date machine with several cores; the
wall times are what matter most to users.

Point tracking takes most of the wall time (Figure 5.18) per frame. The purpose
of the filtering (Section 4.4.1) is to identify outlier trajectories in the dissimilarity
graph. Conceptually, a subgraph of the dissimilarity graph without the outliers can
then be used in further processing. In the implementation however, a shortcut was
taken and the dissimilarity graph is completely recomputed without the outliers.
Hence, there is duplicate work in the filtering and the statistics step (Figure 5.18).
The gain of removing this duplicate work is small though, and not worth the risk
of premature optimization [87].

Computing the eigenmap is different. The runtimes reported in Figure 5.18 are
obtained with a configuration that computes all eigenvectors. As stated in Sec-
tion 4.4.2, computing all eigenvectors of a matrix has computational complexity
O(N3). Here, it is worth showing the effects of computing only the first few eigen-
vectors with an iterative solver instead. Figure 5.19 shows the effects of replacing
the full eigenproblem solver with an iterative solver for the three scenes.
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Figure 5.18: Runtime of the motion segmentation system.
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Figure 5.19: Runtime of full and iterative eigenproblem solver.

52



Chapter 6

Conclusion

In this chapter, we bring the key findings from this work together. Of particular
interest is the thesis question: whether it is possible to segment dynamic scenes by
making use of depth data from RGB-D videos. This question has two answers, and
both are valid in their own sense. The first answer is yes, because the discussed
method successfully segmented motion in dynamic scenes recorded by a moving
camera. The second answer is no, because the method is limited in its ability
to segment dynamic scenes it has been trained on. The mixed results are put
into relation in Section 6.1 by showing what has been done to make it succeed in
several cases, and discussing the nature of the limitations. The latter motivate
Section 6.2, which lists what might be done in future to overcome the limitations.
Overall, the conclusion is that despite of the difficulty of the motion segmentation
problem, despite of the lack of strong assumptions such as fixed cameras or dominant
background, despite of the simple approaches to each step in the presented method,
the system is still able to segment various dynamic scenes.

6.1 Key findings

The good news is that the method successfully segmented dynamic scenes with un-
constrained rigid motions in the presence of a moving camera, noise, and occlusion.
The method accomplishes this with simple filtering, with textbook statistics on
pairwise distances, and a plain vanilla implementation of spectral clustering. All of
this is performed with multiple frames per second. This is promising as the various
stages of the algorithm leave room for improvement.

On the other hand, it must be clearly stated that the method has not proved
sufficient to segment many of the scenes included in the evaluation. This can be
attributed to the method being too simple. Each of the stages has its weaknesses,
and a chain is only as strong as its weakest link. The first link is the point tracker,
which has the tendency to produce corrupted trajectories especially in the areas
of motion boundaries. The second link consists of the trajectory statistics. The
range and the variance tend to memorize noise. Furthermore, the local pairwise
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comparisons in each frame do not attempt to distinguish noise from actual motion.
Noise makes spectral clustering, the third link in the chain, map trajectories to
locations in feature space that are either far away from the actual clusters, or in
between of the actual clusters. K-Means, as the fourth and final link, has difficulties
to find the clusters in the presence of noise.

6.2 Future directions
The presented method can be seen as a general framework for motion segmentation.
Most of the mentioned links can be replaced with an alternative while keeping the
rest of the method unchanged. Many of the ideas of Brox and Malik [2] might be
transferred from 2-d to 3-d. The Lucas-Kanade point tracker can be replaced by
another point tracker, possibly trading speed for quality. Less drift, longer trajecto-
ries, and semi-dense trajectories might yield better input for the subsequent stages
in the method. An explicit model of sensor noise might be included when building
the similarity graph. This might include other measures of statistical dispersion or
temporal filtering to tackle noise. Finally, k-means might be replaced by a more
sophisticated algorithm for label assignment. The findings by Brox and Malik [2]
that the second eigenvector alone does not convey enough information have been
confirmed in this thesis in a slightly different context. This suggests that their choice
of replacement for k-means might also work in this context.

The modularity of the approach has advantages. Weak parts can be replaced.
Complexity can be added where needed. However, the lack of an off-the-shelf bench-
mark dataset with RGB-D videos and pixel-accurate ground truth makes it difficult
to decide where to start adding complexity, i.e. to determine the weakest link. In
this thesis, we have taken the first steps and created several RGB-D videos, both
including real-world scenes and simulated scenes. However, the creation of a large
corpus of videos with depth and ground truth together with a workbench for eval-
uation is a task complex enough for a separate master thesis. A benchmark with
annotated RGB-D videos might drive research in motion segmentation using depth
data in a similar way as the Hopkins-155 database has done for 2-d trajectory-based
motion segmentation.

54



Bibliography

[1] L. Zappella, X. Llado, and J. Salvi, “New Trends in Motion Segmentation,” in
Pattern Recognition (P.-Y. Yin, ed.), ch. 3, InTech, 2009.

[2] T. Brox and J. Malik, “Object Segmentation by Long Term Analysis of Point
Trajectories,” in Computer Vision – ECCV 2010, Lecture Notes in Computer
Science, pp. 282–295, 2010.

[3] R. Megret and D. DeMenthon, “A Survey of Spatio-Temporal Grouping Tech-
niques,” tech. rep., INSA Lyon; University of Maryland, 2002.

[4] L. Zappella, “Motion Segmentation From Feature Trajectories,” 2008.

[5] K. Kim, T. H. Chalidabhongse, D. Harwood, and L. Davis, “Real-Time Fore-
ground–Background Segmentation using Codebook Model,” Real-Time Imag-
ing, vol. 11, pp. 172–185, June 2005.

[6] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shot-
ton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon, “KinectFusion:
Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera,”
in Proceedings of the 24th Annual ACM Symposium on User Interface Software
and Technology, pp. 559–568, ACM, 2011.

[7] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton,
D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon, “KinectFusion: Real-
time Dense Surface Mapping and Tracking,” in Proceedings of the 2011 IEEE
International Symposium on Mixed and Augmented Reality, pp. 127–136, IEEE,
Oct. 2011.

[8] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A. Kolb, “Real-
Time 3D Reconstruction in Dynamic Scenes Using Point-Based Fusion,” in
Proceedings of the 2013 International Conference on 3D Vision, IEEE, June
2013.

[9] Y. Sheikh, O. Javed, and T. Kanade, “Background Subtraction for Freely Mov-
ing Cameras,” in Proceedings of the 2009 IEEE International Conference on
Computer Vision, pp. 1219–1225, IEEE, Sept. 2009.

55



BIBLIOGRAPHY

[10] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated Cartogra-
phy,” Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[11] X. Zhou, C. Yang, and W. Yu,“Moving Object Detection by Detecting Contigu-
ous Outliers in the Low-Rank Representation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 35, no. 3, pp. 597–610, 2013.

[12] S. Perera and N. Barnes, “Maximal Cliques Based Rigid Body Motion Seg-
mentation with a RGB-D Camera,” in Computer Vision – ACCV 2012 (K. M.
Lee, Y. Matsushita, J. M. Rehg, and Z. Hu, eds.), Lecture Notes in Computer
Science, pp. 120–133, Springer, 2013.

[13] J. Yan and M. Pollefeys, “A General Framework for Motion Segmentation:
Independent, Articulated, Rigid, Non-rigid, Degenerate and Non-degenerate,”
in Computer Vision – ECCV 2006 (A. Leonardis, H. Bischof, and A. Pinz,
eds.), Lecture Notes in Computer Science, pp. 94–106, 2006.

[14] A. Goh and R. Vidal, “Segmenting Motions of Different Types by Unsupervised
Manifold Clustering,” in Proceedings of the 2007 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1–6, IEEE, June 2007.

[15] S. R. Rao, R. Tron, and R. Vidal, “Motion Segmentation via Robust Subspace
Separation in the Presence of Outlying, Incomplete, or Corrupted Trajectories,”
in Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–8, IEEE, June 2008.
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Notation

F Number of frames.

N Number of trajectories.

C, k Number of clusters.

u, v Image coordinates.

Pi Point in the scene.

xi 2-d trajectory.

Xi 3-d trajectory.

xt
i 2-d image coordinates of the projection of Pi at time t.

Xt
i 3-d camera coordinates of point Pi at time t.

li Length of trajectory.

ρt
ij Euclidean distance between points Pi and Pj at time t.

dt
ij Euclidean distance between projections xt

i and xt
j .

Tij Temporal overlap of two trajectories.

r̂ Sample range.

µ̂ Sample mean.

v̂ar Sample variance.
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G Graph.

A,B,V Sets of vertices.

E Set of edges.

di Degree of a vertex.

vol Volume of a graph.

cut Cut in a graph.

Ncut Normalized cut in a graph.

D Degree matrix.

S Similarity matrix.

L Graph Laplacian.

F Matrix of eigenvectors.

λi i-th smallest eigenvalue.

fi Eigenvector for eigenvalue λi.

σ Parameter for Gaussian similarity function.

nf Number of eigenvectors to compute.

p Probability mass function.

H Entropy.

tc Trajectory corruption rate.

th Trajectory entropy.
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Abbreviations and Acronyms

ARI Adjusted Rand index.

GPU Graphical processing unit.

KTH Kungliga Tekniska högskolan.

LSA Local subspace affinity.

MST Minimum spanning tree.

NASA National Aeronautics and Space Administration.

PCA Principal component analysis.

RANSAC Random sample consensus.

RGB-D Red, green, blue - depth.

SDS Simulated dynamic scenes.

SLAM Simultaneous localization and mapping.

SML Smart Mobility Lab.

TUM Technische Universität München.
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A.1. TRAJECTORY LENGTHS

A.1 Trajectory lengths
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Figure A.1: Trajectory length histograms for all datasets. The x-axis denotes the
fraction of the video in which the trajectory was alive. The number of trajectories
in each bin is given by the y-axis.
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A.2 Dissimilarity box plots
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Figure A.2: 3-d range box plots for all annotated videos.
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Figure A.3: 2-d range box plots for all annotated videos.
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Figure A.4: 3-d variance box plots for all annotated videos.
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Figure A.5: 2-d variance box plots for all annotated videos.
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A.3 Segmentations

(a) certificate

(b) poster

(c) prml

(d) momo
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(e) globe_s

(f) two_books

(g) truck_s

(h) truck_m
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(i) vwt3_m

(j) two_vwt3

(k) earth

Figure A.6: Motion segmentation results for selected scenes. The left-most images
show a video frame with the labeled trajectories. The center images show the second
eigenvector in grayscale. The right-most images show the labels alone.
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